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1. Introduction and motivations

Supergravity (SUGRA) theories arose as attempts towards a unification
of the fundamental interactions, including Quantum Gravity, and with this re-
spect their role has been confirmed with the advent of superstring theories and,
more speculatively, of the theory of supersymmetric extended objects, called su-
per p-branes. A super p-brane lives on a (p + 1)-dimensional world-sheet in a
D-dimensional target super-space-time; the string has then to be considered as a
1-brane (p = 1). The allowed values of D, for a given p, are dictated by classical
space-time supersymmetry [1,2] and may be further restricted by consistency re-
quirements at the quantum level. At low energies these theories can be described
by SUGRA theories in D space-time dimensions and these SUGRA theories de-
scribe also the target space dynamics of the super p-brane o-models. In the target
space one can also have extended N = 2 supersymmetry, see [3], but in this paper
we concentrate on theories with simple NV = 1 space-time supersymmetry.

One of the remarkable features which arose recently in the physics of ex-
tended objects is the string (p = 1, D = 10) — five-brane (p = 5, D = 10) duality
[4,5], meaning essentially that one theory can be regarded as a soliton solution of
the other. According to a strong version of the duality conjecture [2,6] the two
theories are equivalent in the sense that they are just different mathematical de-
scriptions of the same underlying physics. The same should then also be true for
the two corresponding N = 1, D = 10 supergravity theories.

In this paper we present a unified formulation of the two pure SUGRA
theories which arise respectively as background theories of the string and five-
brane o-models at the classical level. The first SUGRA theory is usually described
in terms of a closed three-superform Hjs [7] (corresponding to the string) and the
second (dual) theory in terms of a closed seven-superform H7 [8] (corresponding
to the five-brane).

We discuss the issue of duality also in non minimal N =1, D = 10 SUGRA
theories which take quantum corrections to the heterotic string o-model into ac-
count. In this case, in particular, the differential of H3 is proportional to a second
order polynomial in the gauge and Lorentz curvatures, dHz = Tr(F?) — tr(R?),

while H; remains closed. We leave the discussion of the SUGRA theory where the
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differential of H7 becomes proportional to a fourth order polynomial in the curva-
tures while H3 remains closed, which takes quantum corrections to the heterotic
five-brane o-model into account, to a future publication [9].

The superforms Hs and H7 are related in a way which resembles much the
duality relation between three and seven-forms in ordinary ten-dimensional space
and are therefore usually said to be “dual” to each other. The two theories, which
are known to be equivalent, are most conveniently described in superspace. One
has to choose an appropriate set of constraints on curvatures and torsions and
then to solve the Bianchi identities. In the current treatments in the literature,
according to the set of constraints one uses, one has to impose the Bianchi identity
dHs = 0 to set the theory on shell [7,10] while the identity dH7 = 0 does not
contain any dynamical information and, in particular, does not set the theory on
shell [11].

In the new formulation of D = 10, N = 1 SUGRA which we present here
none of these identities are imposed as starting points, they are rather both conse-
quences of the (simple) constraint we will impose on the super-Riemann curvature
and, moreover, in this formulation the fields Hz and H7; are not introduced explic-
itly “by hand” at the beginning; the (closed) forms Hs and H7 will arise naturally
as components of the super-curvatures and torsion and are treated in a completely
symmetrical fashion: therefore in our formulation the “self-dual” nature of D = 10,
N =1 SUGRA is manifest.

The constraint on the supercurvature, mentioned above, which we introduce

consists in setting to zero the spinorial components of the supercurvature two-form
Rcd = %EBEARABcdy

Raﬂab =0 (11)

as suggested in [12]. Here A indicates both a vectorial index a and a spinorial index
«. The constraint (1.1) resembles much the algebraic structure of the Super-Yang—
Mills theory (SYM) in ten (and also in other) dimensions. We recall in fact, that
if we indicate with F' = %EAEB Fpa the Lie algebra valued Yang—Mills curvature
two-form the constraint F,,3 = 0 sets the theory on shell (in D = 10) in that it

implies the equations of motion for gluons and gluini. As we will see, precisely the
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same happens also for N =1, D = 10 pure SUGRA: the constraint (1.1) imposes
all the equations of motion for the supergravity fields and implies, moreover, the
existence of a closed three-superform and of a closed seven-superform. We would
like to remember that this analogy between SUGRA and SYM holds only for
pure SUGRA in that, if one constructs non minimal models e.g. coupling the
supergravity to gauge fields, the constraint (1.1) can no longer be imposed [12].

A remarkable advantage of having a supercurvature two-form satisfying
(1.1) results from the following considerations regarding anomalies. As is known
N =1, D = 10 pure SUGRA is plagued by an ABBJ Lorentz anomaly A; due
to the fact that the theory contains chiral fermions and that D/2 4 1 is even.
The Lorentz anomaly Aj can be computed via standard techniques through the
so-called extended transgression formula [13] starting from the twelve-form

62

7 1
Xio=—tr RS — — tr R*tr R2+ — (tr R?)? 1.2
12 = g r R 180 r R=tr R +216(TR) (1.2)

where with R,® we mean here the curvature two-form in ordinary space. The
procedure to compute Ay, relies heavily on the following properties of Xio: it is
Lorentz-invariant, closed dXi2 = 0, and it vanishes being a twelve-form in ten
dimensions. If we indicate with €27 the BRST operator associated to Lorentz

transformations, Ay, satisfies the Wess—Zumino consistency condition:

QAL =0. (1.3)

It is however clear that Ay, being the standard ABBJ-anomaly, is not supersym-
metric. If we indicate with Qg the BRST operator associated with supersymmetry
QgsAyp # 0, meaning that there is also a non vanishing SUSY-anomaly Ag in the
theory. Therefore one has to cope with the following coupled cohomology problem
[14]:

QAL =0
OsAr +QrAs =0 (14)
NgAg = 0.

A straightforward extension of the transgression method, which allowed to deter-

mine Ay, in ordinary space, to superspace is not available because as a superform
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X12 does not vanish in D = 10 superspace. However, in [12] it has been shown that
an explicit solution of the coupled cohomology problem (1.4) can be given provided
the superform X5 satisfies “Weyl triviality”, i.e., there exists a Lorentz-invariant

eleven-superform Y such that

X1 = dY. (1.5)

Note that there exists always an eleven-superform Yog of the Chern—Simons type,
simply due to the fact that X5 is closed; dX12 =0 = X5 = dYeg, but Yog is
not Lorentz-invariant. On the other hand, it can be shown [12] that Weyl triviality
(1.5) holds provided the constraint R,pq, = 0 is satisfied.

We conclude that in the present formulation the coupled cohomology prob-
lem (1.4) can be explicitly solved and an explicit expression for the supersymmetric
partner Ag of the Lorentz-anomaly can be determined, in complete analogy with

the SYM theory in ten dimensions.

The issue of duality in N =1, D = 11 SUGRA gets settled in a somehow
different manner. The physical content of this theory is given by the graviton
FE,.*, the gravitino F,,* and by additional bosonic degrees of freedom which, at
the kinematical level, can be described by a three-form potential B3 or a six-form
potential Bg, suggesting a duality relation between the field strengths Hy = dB3
and H, = dBg.

Also in this case we reformulate the theory in superspace in a strictly super-
geometrical framework without introducing any closed H,4 or Hy at the beginning.
This time the theory is put on shell by setting to zero a certain eleven-dimensional
spinor superfield while in eleven dimensions R,gq remains intrinsically non van-
ishing in that it can not be eliminated by any field redefinitions. The Bianchi
identities on the torsion imply then the existence of a 4-superform H, and of a

7-superform H; such that

dH, =0 (1.6)

dH7 = 0. (1.7)



This means that N = 1, D = 11 SUGRA is self-dual from a super-kinematical
point of view, but we will see that this self-duality is broken at a dynamical level,
as it is well known in the literature from many years [15]. This fact agrees of
course also with the observation that there exists a super two-brane which lives in
an N =1, D = 11 SUGRA background, but that no dual p-brane, living in the

same background, is known to exist.

The paper is organized as follows. In section two we discuss the general
framework of our formulation of N =1, D = 10 pure SUGRA. In section three we
solve the Bianchi identities. In section four we determine the equations of motion
and evidenciate the self-dual structure of the theory. Sections five and six are
devoted to N =1, D = 11 SUGRA while in section seven we discuss, in the present
formulation, non minimal theories in ten and eleven dimensions. A technical
appendix containing our conventions and some group-theoretical considerations

on SO(10) and SO(11) concludes the paper.

2. The structure of pure supergravity in ten dimensions

The N =1, D = 10 pure supergravity [16] multiplet is given by the gravi-
ton F,,%, the chiral gravitino F,,“, the dilaton ¢, a chiral fermion which we call
gravitello V,, and by additional 28 bosonic degrees of freedom which can be de-
scribed either by a 2-form potential By, 4, or by a 6-form potential B, _q4 [17].

A superspace in ten dimensions [7] is spanned by the coordinates zM =
(™, 0") where ™ (m = 0,1,...,9) are the ordinary space-time coordinates and
0" (u=1,...,16) are Grassmann variables. We introduce the supervielbein one-
forms B4 = dzM EyA4(z) where A = {a,a} (a =0,1...,9; a =1,...,16) is a
flat index (letters from the beginning of the alphabet represent flat indices: small
latin letters indicate vectorial indices, small greek letters indicate spinorial indices
and capital letters denote both of them). The p-superforms can be decomposed in
the vielbein basis as

1
¢p = HEAl — BN 4, (2).

We denote the Lorentz-valued super- spin connection one-form by Q42 = dzM Q48 =
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E®Qca® and the corresponding covariant differential is written as D, while d
indicates the ordinary superspace differential. A superfield ¥4? is said to be
Lorentz-valued if g, = —tpe and 1,° = %(F“b)aﬁ 1. Here we defined

rer—ar = F[al _ Fak]
and the matrices (I'%),5 and (I, ) are Weyl matrices satisfying the Weyl algebra
(see the appendix)
(T")ap(T?)?7 + (%) ap(T*)%" = 27067

The torsion two-form and the Lorentz-valued curvature two-form are defined re-
spectively as
1
T4 = DEA = §EBECTCBA

(2.1)
1
Ra® =dQa" +04°Q0" = SECEP Rpca®
and satisfy the Bianchi identities
DTA = EPRpA (2.2)
DRAP =0. (2.3)

Notice that we do not introduce any two- or six-form potential.

The above introduced superfields contain a huge number of unphysical fields
which have to be eliminated by imposing suitable constraints on the torsion T4 5¢
and on the curvature R4pc”. Once constraints are imposed the Bianchi identities
are no longer identities and they have to be solved consistently.

As it has been shown in [18] once the torsion Bianchi identities (2.2) are
consistently solved the Bianchi identities for the curvature (2.3) are automatically
satisfied. This implies that it is sufficient to solve the torsion Bianchi identities

which in components read as:

DiaTpcy” + Tiap“Toc)” = Ruapey” (2.4)

where the symbol [ - ) indicates graded symmetrization. In what follows [- - -] will

denote antisymmetrization and (- --) symmetrization of indices.
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Our starting point is the fundamental rigid supersymmetry preserving con-

straint

T.5% = 20% 5. (2.5)

Starting from this constraint we can simplify the other components of the torsion
via field redefinitions through the following considerations. In terms of irreducible

representations (irrep) of SO(10) we can decompose T,57 and T,," as follows:

Tos” = (1440 @ 560 © 144 & 2 - 16) (2.6)
Toa’ = (720© 560 ©2-144 © 2 - 16) (2.7)

Through the field redefinitions [19,20]

E® = E“+ E"H,®
(2.8)
Q;ab — Qaab + onab7

where H,® and X,," are suitable covariant superfields, we can eliminate from 7T,,,°

all the irreps apart from the 720. Writing now (2.4) in the lowest sector

(Fa)5(aTﬁv)6 = (Fg>(aﬂT7)ga (2.9)

and noting that according to (2.6) T,3” does not contain the irrep 720 also Th,"
can not contain it and must therefore vanish. Noting that the general content of
irreps in (2.9) is 5280 & 1440 ¢ 720 ¢ 560 ¢ 144 & 16 and that the r.h.s. of (2.9) is
zero, we conclude that T,,37 can contain only an irrep 16, which corresponds to a
spinor V,,. A short calculation gives then
Tog” = 200, Vi) — (19)a(Ty) V. (2.10)
All these considerations were of purely kinematical nature.
We introduce now dynamics by imposing that the purely spinorial compo-

nents of the supercurvature vanish:

Raﬁab = O’ (211)
we will in fact see that with this constraint the theory is set on shell.
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To summarize, our basic parametrizations for supercurvature and torsion

are
Taﬁa — QFZﬁ
Tap” =20,Va) — (I9)ap(l'y)"*V,

(2.12)
Taab =0= Taab

Rozﬁab =0.
In the next section we will see that the closure of the superalgebra implies a

constraint on the superfield V,, which can be identically solved if one says that V,

is the spinorial derivative of a scalar superfield, the dilaton ¢

Va = Doz¢- (213)

We would like to stress that, without any additional assumption, (2.12) and (2.13)
are sufficient to determine the theory completely and to imply in particular all
the equations of motion demanding the closure of the SUSY-algebra, as will be
seen in the next section. Under “closure of the SUSY-algebra” we understand the

consistency of the Bianchi identities with the commutator algebra:

DaDp — (‘)ABDBDA = —Tup“Dc — RAB##- (2.14)

3. Solution of the torsion Bianchi identities

The Bianchi identities (2.4) which have to be solved are written more ex-
plicitly as follows (the one with the lowest dimensions, see (2.9), has already been

solved):

QTG(QV(Fb)ﬁ)’Y + (Fg)aﬁTgab =0 (31)
D(ozTB“r)(S - Q(Ijg)(ozﬁTv)g/(S + T(ozﬁET’v)aé =0 (3.2)
D, T + Q(FC)OWTabFy = 2Ra[ab]c (3.3)
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D,Tog” + 2D(aTﬁ)a7 + QTQ(Q‘ST@(;'Y + QFinga7 — T Ty = 2Ra(o¢6)’y (3.4)

D[aTbc]d - T[abch]gd = R[abc]d (35)

DaTa” + 2D Thjo” = 2T Tyjs” + Tar Ty + Tun*Tsa” = Rava”  (3.6)

we want now to present the (unique) solution of (3.1)-(3.6) in compatibility with
(2.12) and (2.13).

The solution of these equations can be most easily achieved using group
theoretical considerations: every tensor appearing in the equations gets first de-
composed in irreps of SO(10), then the general content of irreps of each equation
has to be established and finally the equations are solved in each sector of SO(10)
irreps separately; this procedure reduces the necessary I'-matrix gymnastic to a
minimum.

Egs. (3.1) and (3.2) are solved as follows: they imply that the vectorial
torsion T, is completely antisymmetric in its three indices and corresponds thus

to a 120 irrep of SO(10):

Tabc = Tabdndc = T[abc]; (37)
moreover,
8_ 1wy 5
Taa = Z(F )a Tabc (38)
1
DoDgop = =T ;Dyop + Vo Vg + E(FQI,C)OLQTCL”C (3.9)

(remember that V,, = D,¢). These relations represent the unique solution to (3.1)
and (3.2).
Eqgs. (3.3) and (3.4) are solved by the following relations:

DT = _6T[ab€(rc])€a (310)
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Raabc = Q(Fa>ozaT17€c (311)

1
(Fb)asTbLLE = D,Vo + ZTabc<FbC)a6Vﬂ' (312)

Eq. (3.11) says that the curvature with one vector- and one spinor-like index
is proportional to the field strength of the gravitino, T,,%, in analogy with the
Yang—Mills case [10] where one gets

Faa = (Fa)asxs
where X is the gluino superfield. (3.12) is the equation of motion for the gravitino.
Eq. (3.5) is the purely vectorial Bianchi identity for a curvature with torsion
and has thus not to be “solved”. It implies in particular that the antisymmetric
part of the Ricci tensor R., = Rycp¢ is non vanishing,

1 C
Rias) = —5 D Teap- (3.13)

Eq. (3.6) has to be regarded as an equation which determines the spinorial deriva-
tive of T,,”, i.e. the supersymmetry transformations law for the gravitino field
strength.

In the next section we will enforce the closure of the SUSY-algebra via
(2.14) to derive the equations of motion and to prove the self-dual character of the

theory.

4. The equations of motion: duality as an outcome

So far we have only obtained the equation of motion for the gravitino, (3.12).
The equation of motion for the graviton can be obtained contracting (3.6) with
(I'“T'.)s* and using in the first term on the r.h.s. the gravitino equation (3.12).
One gets:

Rbc = 2D0Db¢ - DaTabm (41)
and symmetrizing this one obtains Einstein’s equations
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Ri(ap) = 2D(a Dy . (4.2)

To obtain the equation of motion for the gravitello V,, one has to work a little bit
harder. In the conventional formulations, see for example [7][10][21], this equa-
tion is obtained demanding the existence of a closed three-superform, suitably
constrained. In the present case we can obtain it by imposing the closure of the

SUSY-algebra on (3.9). We compute

1
DDy Dg¢p = —T¢,DyDg¢ — 5T5a5D5Vﬁ (4.3)

and equate this expression to the one obtained applying D. to (3.9). The net

result we get is the equation of motion for the gravitello:

1
(T*)* D, V5 = 2(I')*’V3D,¢p — E(rabc)aﬂwbcvﬂ. (4.4)
The equation of motion for the dilaton follows now as usual by applying D, to

this equation:

1
D®D,é = 2D, D — ETabcTa”C. (4.5)

The reconstruction of Hs

Now we come to the “reconstruction” of the equations for the gravi-photon. We

want first construct a closed three-form. To do this we compute

1
D(3DayTape = =T 53D gTope — §Ta55D5Tabc (4.6)

and equate this expression to the one obtained applying Dgs to (3.10) and using
on the r.h.s. again (3.6). One gets, upon projecting with (I'y)*?,

DyTope — 6D[aTbc]d + 3R[abc]d - 9T[ibc]d =0 (47)

where we defined bec g = Tav?Tycq. Comparing this with the Bianchi identity (3.5)

we obtain precisely what we need:
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3
DiaThca) + 5 Tiapea) = 0 (4.8)

In fact, if we define now a three-superform Hsz = %EAEB ECHcpa through:
Hoz57 =0= Haba
Hoop =2 (T'a)ap (4.9)

Habc = Labe

the relations (3.10), (4.8) and the cyclic identity (I'“)ag(I'a)y)s = 0, imply then
that

dH;3 =0 (4.10)

and therefore

Hs = dB, (4.11)

for some two-superform By (throughout this paper we assume that there are no
topological obstructions and so all closed forms are also exact). We conclude that

we can interpret Ty, as the curl of a two-form potential, and its equation of motion

can be read off from (3.13) and (4.1):

D.T®u = —4Dy, Dyo. (4.12)

The reconstruction of Hy

It is a little bit less straightforward to construct a closed seven-superform starting
from (4.12). We proceed through the following steps. First we observe that we

can rewrite (4.12) as

D. (e—2¢Tcab> — 2729,V (4.13)

Defining now a 120 irrep as Vg = (Fabc)o‘ﬁ VoV we can use the gravitino and

gravitello equations of motion to obtain its divergence as
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D (6_2¢Vabc> - €_2¢ ((thab>aﬁThgsvﬁ + 2TabaVa + T [a‘/b]qcz) .

Eliminating now the term T,,*V,, between (4.13) and (4.14) we get

D <6_2¢(Tabc - Vabc)> - _6_2¢<(Ph9ab)€ﬂThg€V5 + T [a%]cwz)'

With the definitions

1 J—
Hal—a7 = g €ay—arbibobs€ 2¢ (Tb1b2b3 — Vb1b2b3>
Haal—a6 = _26_2¢(Fa1—a6)aﬂVﬁ
(4.15) can be recast into

7 7
D[alHag—ag] + 5 T[a1a2bHa3—a8]b + 5 T[a1a26H5a3—a8] = 0.

If we now define, moreover,

Haﬁal—% = _26_2¢(Fa1—a5>aﬁ
- = HO(10¢2...O¢7 — O

HOllol20¢3a1—a4

it is a simple (but lengthy) exercise to show that the seven-superform

1
H,; = ﬁEAl — EYHy, a4,

satisfies identically

dH7 = 0.

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Equation (4.17) is clearly the projection of (4.20) on the purely vectorial sector.

Thus we proved the existence of a six-superform Bg such that

H; = dBs.

The theory admits therefore a double interpretation: we can regard T, as a

closed three-superform whose equation of motion is given by (4.12); otherwise we

can express Ty through the first equation of (4.16), in terms of a closed seven-form

H,,_a, whose equation of motion can be read off directly from (4.8):
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Dbeal—aG = _2Dg¢ Hga1—116 - 6‘/17152[(11Hb1b2a2—a6]

1 L 3
—i—gsal_%bl big=2¢ (Dbl‘/bg—b4 + B Vflbzbgzu) (4.21)

1

180
where Vfbcd = Var?Vyea-

f Hb3b4f1—f5

e2¢)‘€CL1—116171—174}Iblbzf1— 5
It is worthwhile to notice that (4.8) and (4.21) simplify naturally if one
introduces the torsion-free covariant derivative, D,, which is defined in terms of

the torsion-free connection

~ 1
Qabc = Qabc — ETabc- (4.22)

(4.8) and (4.21) become then simply:

D[aTbcd] = D[aHbcd] =0

- 1 Cba
D9(62¢H9a1_06) - ?‘gm—aebl b4Db1 Visbgbs -

Notice, however, that the shift (4.22) would introduce a non vanishing R, gqp, as
it can easily be seen, and therefore we did not perform this shift.
It is important to notice that the fundamental duality relation (4.16) in-

volves only tensors which are invariant under the gauge transformations

Bg — Bg + dos
By — By +do
where ¢, 5 are arbitrary superforms (contrary to what happensin N =1, D =11
SUGRA, as we will see). This implies definitely that (self)-duality holds also at the
dynamical level, meaning that one can write a gauge invariant action and gauge
invariant equations of motion in which appears only H7, or a gauge invariant action
and gauge invariant equations of motion in which appears only Hj.
The analysis of the self-duality property in non minimal D = 10 supergrav-

ity theories will be developed in section seven.

5. N=1, D=11 Supergravity: a group theoretical analysis of the

constraints

We want derive in the following two sections the superspace equations of
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motion of N = 1, D = 11 SUGRA according to a strategy analogous to the
one used in the preceding sections to evidenciate the self-duality nature of N =1,
D = 10 pure SUGRA. Through an exhaustive group theoretical analysis of possible
constraints we want also to show in which direction one has to move if one wants
to construct non minimal N = 1, D = 11 supergravity theories. Such non minimal
theories are interesting in that they can take quantum corrections to the classical
super two-brane o-model into account, supposed that the super two-brane is a
consistent theory also at the quantum level.

We take here the conservative point of view demanding that the zero-

dimension component of the torsion is the rigid one:
Top” =245

(for conventions about I'-matrices and notations, see the appendix). Our starting
points are again the Bianchi identities (2.2) and (2.3), Dragon’s theorem holds
also here and we have thus to find a consistent solution of (2.4).

We remember that the N = 1, D = 11 SUGRA multiplet is made out of

@ and additional bosonic degrees of freedom

the graviton, F,,%, the gravitino E,,
which “numerically” can be described in terms of a three-form Bjs or a six-form
Bg potential. Also here we do not introduce any closed four- or seven-superform
a priori, but try to reconstruct them in superspace by solving solely (2.4).

To begin with, we apply the same kinematics as in section two. The decom-

positions in terms of SO(11) irreps, analogous to (2.6) and (2.7), are now
Top” =5280@ 4224 3520 2 - 1408 ¢ 3 - 3204 3 - 32 (5.1)

Too® = 1760 & 1408 ¢ 2 - 320 & 2 - 32. (5.2)

Precisely as in section two through the field redefinitions (2.8) we can now eliminate
from T,o" all irreps apart from the 1760. The lowest order Bianchi identity is
formally identical to (2.9):

(Fa)(?(aTﬁv)é = (Fg>(aﬂT7)ga' (5.3)

Again the 1760 irrep is not contained in T,3” and so (5.3) implies that Toob

vanishes. Moreover, the general content of (5.3) is given by
36960 @ 10240 @ 5280 @ 4224 & 3520 © 1760 © 2 - 1408 © 3 - 320 @ 2 - 32;
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taking a look at (5.1) and noticing that the r.h.s. of (5.3) vanishes, we conclude that
all irreps of T,,3” have to vanish, apart from one 32 (the spinorial representation).
This is due to the fact that T, 37 contains three 32 irreps and that (5.3) establishes
two linear relations among them; therefore only one of them is independent. A

short computation gives then
Top” =165, Vi) — 6(I)ap(Tg) Vs + (T%)ap(Tab) Vs (5.4)

where we identify V, as the independent 32 irrep. This relation substitutes eq.
(2.10) in ten dimensions. A more fundamental difference between D = 10 and
D = 11 SUGRA comes in at this point: the theory is set on shell and reduces to
pure N =1, D =11 SUGRA if we set (as a dynamical constraint):

Toag? =0 & Vo =0. (5.5)

As we will see Rqpgqp is in this case intrinsically different from zero, it can not
be set to zero by field redefinitions. So with respect to the ten-dimensional case
the situation is completely reversed: there we could set Rygq5 = 0 and then 7,57
survived, here it is precisely the opposite!

Once we have established that Rz, is different from zero we can shift the
vectorial connection 2,;,° to set T,,¢ to zero (notice that in D = 10 the analogous
shift in the connection was not performed in that it would have turned on R,gqp)-

To conclude, D = 11, N = 1 pure supergravity can be derived through the

following constraints
Top® =2I';,
7 (5.6)
Taab = ozﬁ’y = Tabc = 0.

What we learned mainly from all this is that, within the framework in which
Top" = 2I'g 5, the unique way to construct a non minimal N =1, D = 11 SUGRA
(modulo field redefinitions) is to introduce a non vanishing spinorial 32 irrep in
Twg”. We will comment on the possible significances of this relaxed constraint
and on the importance the resulting theories would have in section seven. Here
we proceed by rederiving minimal N = 1, D = 11 SUGRA relying on group
theoretical reasonings and paying particular attention to the duality structure of

the theory.
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The Bianchi identities are very similar to (3.1)-(3.6). Egs. (3.1) and (3.2)

are substituted by:
AT, T}y, = Raga’

(5.7)
s s
2F?aﬂTgv) = Rapy)
(remember that Ram‘s = iRagabF“bv‘s). The remaining Bianchi identities are

obtained from (3.3)-(3.6) by simply enforcing (5.6) and we will not write them
down explicitly.

The group theoretical reasoning which allows one to solve (5.7) is reported
in the appendix. Here we state simply the result.

It turns out that R,gqs and Too” are expressed in terms of one 330 irrep

(which corresponds to a completely antisymmetric rank four tensor) Wypeq. One

gets
Tua” = 8 (L%2") 0 sWabybabs + (Lavy—bs)as W ™" (5.
5.8
Rozﬁab =96 (FClcz)aBWclczab +4 (Fabcl—m)aﬁWCl_QL-

Equations (3.3) and (3.4) are solved by the relations

Raabc = 2Ta[b6Fc]5a - Tbc6(ra>5a (59)
1

DaWay-a = 57 (Tjasaz)an Tagas (5.10)

Consistency implies also that among the three irreps contained in T,,“, i.e. 1408®
320 & 32, only the highest one, i.e. the 1408, is non vanishing. This implies

immediately the gravitino equation of motion
(T%) 05T = 0 (5.11)
and that the “trace” of T,,* vanishes:

Tup®(T%) s = 0. (5.12)

6. Duality in D=11

The identity (3.5), remembering that now 7,,° = 0, implies that R.j,;¢ = 0

meaning that the Ricci tensor is symmetric, Ry, = R(qp). (3.6) instead can be
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written as
1
DaTabﬁ = _2D[aTb]a6 - 2T[aa7Tb]7B + ZRade(FCd)Oéﬁ' (61)
Using then the tracelessness of T,;,” and contracting (6.1) with (I'T.) 3 we obtain

Einstein’s equations

1 1
Rap — 5nabR = —288 - 4! (Wfb ~3 nabWQ) (6.2)

where we defined R = R%,, Wazb = Wacycoes WpS1 23, W? = Weay—a, W%,

We compute now

(T.)?*DgDoWa, —a, = —32Da,Wa, _a,- (6.3)

The left hand side of this equation can also be evaluated by applying Dgs to (5.10)
and using eq. (6.1) for DgTp,q0,"-

304

The net result of this computation is the important relation
Do, Wasasasas) = 0- (6.4)

If we define now
Hal—a4 — Wal—a4
1
Ha afl = T34 Pa o 6.5
bap = — 7,4 Lab)as (6.5)
Hozﬂ75 = Hozﬂva = Haabc =0

and then as usual Hy = %EAl — EAH,, 4, eq. (6.4), together with other rela-

tions of the present and the preceding section imply that Hy is a closed superform
dHys =0 (6.6)
and therefore we can define a 3-form superpotential Bz such that

H, = dBs. (6.7)

Using now again the tracelessness of the gravitino field strength in the form

Do Tog”(T9Ty.) 5% = 0
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and substituting (6.1) we get

1
Ddeabc = _Zgabcfl—f4gl_g4Wfl_f4ng_g4 (68)

which can be read as the equation of motion for Hy. However, if we define a

seven-superform H; = %EAl — EATH . _ 4, through

1
bi1—b
Hy . = Egal_a7bl_b4W e

1
Haﬁal—ag, - m (Fal—ag,)aﬁ

(6.9)

and all other components of Hy4,_ 4. vanishing, then (6.8), together with other

relations of the last two sections, implies the superspace relation

1
dH7; = mH4/\H4. (610)

Substituting (6.7) we can write this as

1
d\H; ——B3sANHy ) =0
(7 1413 4)

meaning that the seven-superform ﬁ7 =H; — ﬁBg A Hy is closed,

dH; =0 =  H;=dBs, (6.11)

for some six-superform Bg. (6.7) and (6.11) imply that in N =1, D = 11 SUGRA
duality holds at the kinematical level in superspace, meaning that one can always
construct a closed four-superform and a closed seven-superform. We observe also

that we can write

1
H- =dB —B H 12
7=d 6+144 3 A\ Hy (6.12)

which resembles much the relation which couples in N = 1, D = 10 the super-

Maxwell multiplet to N =1, D = 10 SUGRA [22]:
Hs =dBs + kAANF (6.13)

where A and F are the connection 1-form and curvature 2-form respectively. Gauge

invariance in (6.13), A — A + d¢, is saved by demanding that

BQHBQ—]{?(ﬁ/\F.
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Similarly we can save gauge invariance in (6.12) by demanding that B3 — Bs+dgos
be accompanied by

1
BG — BG - mqf)g /\H4.

Thus gauge invariance and duality hold, at a kinematical level, in superspace.
From a dynamical point of view, however, one has to observe that if one
reads the egs. of motion (6.2) and (6.8) in terms of H,, then the potential Bj
appears obviously in a local way simply because Hy = dBs; on the other hand
those equations can also be interpreted as equations of motion which involve Hy
through local (polynomial) expressions, see (6.9), and the equation of motion for

H7 would then simply be (see (6.4))
D' Hyo,—ay = 0. (6.14)

However, the relation between Bg and H; becomes now non local. In fact, if one
“inverts” the relation Hy = dBs to get a non local expression for B3 in terms of Hy,
or equivalently in terms of Hr, (6.12) produces an implicit and non local relation
between H7 and Bg. We conclude, therefore, that in the dual interpretation, i.e.
in terms of a closed seven-form, N = 1, D = 11 SUGRA becomes non local, as
it is already known in the literature of course, and we are forced to formulate the

theory in terms of a closed four-form.

7. Conclusions and further developments

Let us first make some remarks on supergravity theories in ten dimensions.

As we saw, in our approach in the pure supergravity theory a closed three-
superform and a closed seven-superform arise naturally, the unique dynamical
constraint being R,gq = 0. For, to couple the theory to e.g. Yang-Mills fields
or to construct non minimal couplings in pure supergravity theories (or both) one
has to release this constraint introducing a non vanishing R,g.,. On completely
general grounds relying only on the constraint T,3" = 2I'g 5, one can find that
the most general parametrization of R,gq4, modulo field redefinitions, is in terms

of a single 120 irrep superfield [19]

Raﬂab = (Fab010203)a6']616263 (71)
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where the 120 irrep J¢ plays the role of a current. Accordingly, T,.” gets
corrected to
1 1

Taaﬂ — Z(Fbc)aﬁTabc - Z(Fabcd)aﬂ']de' (72)

The solution of the torsion-Bianchi identities with the (most general) parametriza-
tion (7.1) leads to a modification of all equations of motion and to one constraint

on the highest irrep contained in the spinorial derivative of J.

(Do (€% Jape)] " = 0. (7.3)

Once this constraint is satisfied it can be shown that, starting from Jg;., one can

construct a closed four-superform K, such that
dHs = K (7.4)

where Hj is again defined as in (4.9) and

Kapys = Kagya =0
Kozﬁab — 2<Fab016263)aﬂ=]616263 (75)
dK =0

with some more complicated expressions for K,qp. and Kgpq. Therefore a three-

superform (2 exists such that K = dQ2 and hence d(Hs — Q) = 0, or
Hs; = dBs + Q) (76)

for some two-form potential Bs.
Similarly one can show that it is also possible to construct a closed seven-

superform H7

dH7 = 0 (7.7)
through
Hal—a7 = ? 6_2¢5a1—a7b1_b3 (Tbl—bs - %1—53 - 6‘]51—53)
Ha(ll—GG = _26—2(]5(1'1&1_&6)0‘8‘/; (78)

Hopgay—as = _26_2¢(Fa1—a5 )as
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while all other components of H; are vanishing. Remember that, according to
(4.9), which holds also in the extended case under investigation in the present
section, T,p. = Hype-

We conclude that also in the case of D = 10 extended SUGRA models
the theory can be read in two ways: either (7.7) is interpreted as the Bianchi
identity for the Bg potential, and then (7.4) is its equation of motion, or (7.4)
is interpreted as the Bianchi identity for B through (7.6), and then (7.7) is its
equation of motion.

Clearly all this fits precisely in what is known in the literature. In fact, in

order to couple to the SYM fields, one can search for a decomposition of the type
dwYM :TT’f?2 :dXYM+KYM (79)

where F' = %EAE BFp 4 is the Lie algebra valued YangMills supercurvature two-
form and wy s is the associated Chern—Simons three-superform. Choosing for F
standard constraints, i.e. F,3 = 0, it can easily be shown that (7.9) holds, with
a four-form Ky s satisfying (7.5), if one chooses for Xy, the gauge-invariant
3-superform

1
XYM = _4_8ECEbEa(Fabc>ozﬁTT(XaXﬁ>'

Here x© is the gluino superfield (a Lie algebra valued spinor).
The coupling to the Lorentz Chern—Simons form is formally analogous; how-

ever, now it is not trivial to show that [21][23][24]
dwr, = trR? = R,°Ry® = dX 1 + K1,

where X, is a Lorentz invariant 3-form, whose explicit expression is rather lengthy
and can be found e.g. in [21,24], and K|, satisfies again (7.5). In both cases, as
it is well known, Bs has to transform anomalously under gauge transformations
because wy, and wy s are not invariant. The invariant superforms Xy, and X,
redefine simply Hs, in that Q is given by Q = (wyy —wr) — (Xyam — X1) (see
below).

There is a third case of relevance in the literature [25,26] in which K is
the differential of an invariant three-superform, called Z in [25,26], which gives

rise to superstring corrections of the minimal pure supergravity which are not
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dictated by anomaly cancellation like, for example, to a term in the action which

is proportional to the fourth power of the Riemann curvature, (Rapeq)?.

Our main conclusion with respect to N = 1, D = 10 supergravity theories is
that, on completely general grounds, relying on the unique (kinematical) hypoth-
esis that the zero-dimension component of the torsion be flat, T,,3* = 217 5, there
exist always closed three and seven-superforms, and that the theory is therefore
intrinsically self-dual; to repeat, this is true for every non minimal extension of

the theory based on Tog® = 217 5.

Finally, we would like to recall that, as we saw, for non minimal theories
Ragap is no longer zero (see (7.1)) and therefore it is far from obvious that the
twelve superform which triggers the ABBJ Lorentz, gauge and mixed anomalies
[27] satisfies the Weyl triviality property (1.5) (we remember that this property
allows one to compute the supersymmetric partner of the ABBJ anomaly). We
hope to be able to prove Weyl triviality for this twelve superform in our formulation
in that, in contrast to previous formulations, if one switches off the “external
current” Jgpe the extended models reduce to a Weyl trivial model (pure SUGRA)
thanks to Rngqb = 0; this constraint is a sufficient condition for Weyl triviality to

hold, but it should not be necessary.

The three above mentioned non-minimal extensions of the theory are rel-
evant in that the resulting extended SUGRA theories describe the low-energy
dynamics of the heterotic superstring. Particularly interesting is the theory based

on the 3-form field strength

Hs =dBy + (wyym — Xym) — (wp — X)) (7.10)

dHs = TrF* —trR* — d(Xyy — X1)
which is related to the Green—Schwarz anomaly cancellation mechanism [27]. Re-
cently it has been argued that the heterotic five-brane whose background theory
isan N =1, D = 10 SUGRA, is dual to the heterotic string [4] and, as a test
of this conjecture, it has been shown [5] that the Lorentz and gauge anomalies
cancel in the heterotic five-brane via a mechanism which can be regarded as dual

to the Green—Schwarz one. It is based on a seven-form H7 satisfying (in ordinary
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“bosonic” space)

1 1 1 1 1

dH; = —TrF* — ——(TrF?)? — —TrF?trR? + —trR* + — (trR?)?
=g I = g ) = g T RS Gt g (BT
EXgZdu)7

where w7 is a generalized Chern—Simons form. As originally the Green—Schwarz
mechanism, also the “dual” mechanism [28] based on (7.11) breaks supersymmetry.
To restore supersymmetry one had to find a consistent solution of the Bianchi
identity (7.11) written in superspace. We hope that our formulation of N = 1,
D = 10 SUGRA, which gave us a new general insight into the self-dual nature of the
theory, permits us to answer definitely the question of the compatibility of (7.11)
with supersymmetry. This issue is of some importance because, if a consistent
heterotic five-brane exists, then a consistent N = 1, D = 10 supergravity, based
on (7.11), must also exist and in this case one would have (formally) a new theory,
the five-brane, describing the same physics as the heterotic string. Interesting
applications of this equivalence could result for example from the observation that
duality interchanges classical with quantum corrections and therefore, instead of
making a quantum computation in string theory, one could perform a classical
computation in the five-brane.
We will discuss the consistency of (7.11) with supersymmetry elsewhere [9].
Regarding N = 1, D = 11 SUGRA we would like to comment briefly on
the possible extensions of the minimal theory based on (5.4) with a non vanishing
spinor V,. It is clear that this spinor has not to be a new field, but must be
a (covariant) function of the fields already present in the theory, and clearly V
would have to satisfy a certain number of constraints coming from the Bianchi
identities. If the extended theory has to be consistent then the torsion Bianchi
identities have to imply the existence of a closed 4-superform (otherwise the gauge
invariance, needed to eliminate the unphysical degrees of freedom of the gravi-
photon, is missing). The issue of existence of such extended N = 1, D = 11
supergravity theories is of some relevance because the classical supermembrane
(p = 2) lives in an N = 1, D = 11 minimal supergravity background and the
fundamental k-invariance of the supermembrane o-model holds true classically
if the background fields satisfy the equations of motion of minimal SUGRA. If

the o-model is consistent also at the quantum level [29] then one can compute

24



the k-anomalies and the requirement of their cancellation could then give rise
to local non minimal supergravity theories. Along these lines proposals for non
minimal SUGRA theories have been made in [29] via a cohomological analysis of
k-anomalies in the supermembrane o-model. It would be interesting to find out
if our general framework for non minimal N = 1, D = 11 SUGRA, based only
on the rigid SUSY preserving constraint Tog* = 2 I'g 5, fits with the extensions
proposed in [29]; this check, based on a detailed analysis of non minimal models,

will be the subject of a future publication [30].
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Appendix

1. Ten dimensional gamma-matriz algebra
We use a Majorana—Weyl representation for the Dirac matrices v%(*)

(T')ap = ('YG)agCéﬁ

(A1)
(D)™ = C°%(y").",

where C' is the (antisymmetric and idempotent) charge conjugation matrix, char-

acterized by the Weyl algebra
(T)as(T*)77 + (L%)ap(T)? = 20707 (A.2)
(here 7% is the “mostly minus” metric). We define
o = pla. . pad (A.3)

that are subjected to the duality property

1

k
rerae — 4 (_1)3(k+1) -
S O AT

ar-app (A.4)

Ag41°aD

with the minus sign when the first matrix has low spinor indices, and the plus sign

in the other case. Characteristic of ten dimensions is the cyclic identity

(I)(ap(L'g)y)s = 0 (A.5)

which implies its “dual”

(T9) (ap(Tg™ )15 = 0. (A.6)

(*) The e index runs over the full 32 components of Dirac spinors, while the

other indices are in the chiral 16 (lower indices) or 16 (upper indices) irrep of

SO(10).
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2. FEleven dimensional gamma matriz algebra

In eleven dimensions we switch to the “mostly plus” metric to avoid the appearance

“pn
]

of explicit factors in the formalism. Through the charge conjugation matrix C

we define the matrices

(I
T)ap = (7)a"Cep
) (A7)
(Fa)aﬁ — C«oza(,ya)eﬁ
(Pa)aﬁ — Oaa(’ya)sACAﬂ'
The symmetric matrices are
[e [araz [ar-as [ay-as [ai-ay [ar-ai
while the antisymmetric ones are
O, [01~03 [a1-as ai-ar pai-as par-an
The duality property becomes
[ear — E(k-1) 1 ai---ap . A
= ()Y e P (A.8)
the cyclic identity reads
(T9")(ap(Lg)s) = 0 (A.9)
and its “dual” is now
(T9) (ap(Tg™ ) ye) = B(T1192) (5 (T92%4]) 15y, (A.10)
which signals the non vanishing of the curl of H7.
3. Solution of the dimension one Bianchi identities in D=11
Here the dimension one Bianchi identities are:
AT4(a " (T'b) g)e = Ragab (A.11)
2(19) (asTy)° = Rapy)’- (A.12)

27



The irrep content of T,n3 = 1,7 Cy3 is:

Taaﬁ — Ta(aﬁ) + Ta[aﬂ]

= (11655 ®462) © 11 & (1@ 165 & 330) ® 11
(A.13)
= 4290 & 3003 & 1430 & 2 - 462 B 429

©2-33002-16506502-5502-11 P 1.

Symmetrizing (A.11) in (ab) and taking into account that R,gqp is antisymmetric
in a,b we get

a b
T, T, =0. (A.14)

The general irrep content of (A.14) is given by

(ab)(aB) = (1 & 65) ® (11 & 55 & 462)
= 22275 @ 4290 & 3003 & 2025 & 1430 B 2 - 462 (A.15)
G429 275D 65 B2-55 B 2- 11

so that
T’ =2-330®2-165@® 1. (A.16)

Due to (A.11) R,p,° contains at most the irreps contained in (A.16). Now we can
combine egs. (A.11) and (A.12). Eq. (A.12) contains (among a large set of irreps
which we are not interested in) the irreps 3-330 ® 3-165 @ 1. By direct inspection
one finds that the three linear equations in (A.12) involving the two 165 irreps
are linearly independent and therefore the two 165 have to vanish, the equation
on the singlet implies its vanishing while the three equations on the two 330 are
found to be linearly dependent from only one of them, meaning simply that the
two 330 have to be proportional to each other. We conclude that T,.? and Ragab
are made out of a single 330 irrep (a fourth rank antisymmetric tensor Wpeq) in

two different forms as shown in (5.8).
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Abstract

The target space dynamics of supermembrane (and superstring) theories is de-
scribed by supergravity theories. Supergravity theories associated to dual super-
membrane theories live in the same space-time dimension and are themselves dual
to each other. We present a unified treatment in superspace of the two dual
formulations of D = 10, N = 1 pure supergravity based on a strictly super-
geometrical framework: the only fundamental objects are the super Riemann cur-
vature and torsion, and the related Bianchi identities are sufficient to set the theory
on shell; there is no need to introduce, from the beginning, closed three- or seven-
superforms. This formulation extends also to non minimal models. Moreover, in
this framework the algebraic analogy between pure super Yang—Mills theories and
pure supergravity in D = 10 is manifest. As an additional outcome in the present
formulation the supersymmetric partner of the ABBJ-Lorentz anomaly in pure
D = 10 supergravity can be computed in complete analogy to the ABBJ-gauge
anomaly in supersymmetric Yang—Mills theories in ten dimensions. In the same
framework we attack the issue of duality in NV = 1, D = 11 supergravity showing
in detail that duality holds at the kinematical level in superspace while it is broken
by the dynamics. We discuss also possible extensions of this theory which could
be related to quantum corrections of the eleven dimensional membrane.
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