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and

Istituto Nazionale di Fisica Nucleare, Sezione di Padova
Italy

Abstract

The computation of κ-anomalies in the Green-Schwarz heterotic superstring sigma-
model and the corresponding Wess-Zumino consistency condition constitute a
powerful alternative approach for the derivation of manifestly supersymmetric
string effective actions. With respect to the beta-function approach this technique
presents the advantage that a result which is obtained with the computation of
beta-functions at n loops can be obtained through the calculation of κ-anomalies
at n− 1 loops. In this paper we derive by a direct one-loop perturbative compu-
tation the κ-anomaly associated to the Yang-Mills Chern-Simons threeform and,
for the first time, the one associated to the Lorentz Chern-Simons threeform. In
the calculation we shall use a convenient set of constraints for the pure N = 1,
D = 10 supergravity theory which is algebraically identical to the standard set
of constraints for the pure N = 1, D = 10 super Yang-Mills theory. Contrary to
what is often stated in the literature we show that the Lorentz κ-anomaly gets
contributions from the integration over both the fermionic and bosonic degrees
of freedom of the string. A careful analysis of the absolute coefficients of all these
anomalies reveals that they can be absorbed by setting dH = α′

4
(trF 2 − trR2),

where α′ is the string tension, the expected result. We show that this relation
ensures also the absence of gauge and Lorentz anomalies in the sigma-model ef-
fective action. Moreover, the consistency condition of the κ-anomalies ensures
the closure of the SUSY algebra in the Bianchi identities. We evidenciate the
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with a financial contribution under contract SC1-CT92 -D789.
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presence of infrared divergences in the heterotic string sigma model, which are
due to the presence of the d = 2 scalar massless fields of the string, and present
a conjecture for their cancellation which is intimately related to the locality and
Wess-Zumino consistency of the κ-anomalies.
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1 Introduction and summary

In its original formulation, the Neveu-Schwarz-Ramond (NSR) formulation, su-

perstring theory appears manifestly Lorentz-covariant in its critical D = 10 di-

mension, while its principal drawback is the missing manifest target space-time

supersymmetry. Its alternative formulation, the Green-Schwarz (GS) formula-

tion, on the other hand exhibits manifest D = 10 space-time supersymmetry

but, despite a lot of efforts, no manifestly Lorentz-covariant quantization scheme

has been found until now. This difficulty is due to the fact that κ-invariance,

the fundamental symmetry of the GS-string, cannot be fixed in a manifestly

Lorentz-covariant way.

In the low energy limit superstring theory reduces to an N = 1, D = 10

Supergravity-Super-Yang-Mills (SUGRA-SYM) theory whose dynamics is de-

scribed by appropriate effective actions. In the past such effective actions have

been derived directly from the string amplitudes (see e.g. [1]) or by impos-

ing the vanishing of the beta functions in string sigma models embedded in the

zero modes of the string (see e.g. [11, 16]). These methods have been carried

out almost exclusively in the NSR formulation, and as such they miss manifest

space-time supersymmetry, but there is also some important work carried out in

the GS framework [3, 4, 8].

Strings in the GS formulation on the other hand furnish an approach for the

derivation of manifestly supersymmetric effective actions which relies neither on

the knowledge of string amplitudes nor on the computation of beta-functions but

on the fundamental κ-invariance of the GS-string. It goes as follows [2]. One

writes a string sigma model action embedded in the ten-dimensional SUGRA-

SYM superspace describing the massless modes of the underlying string theory.

The κ-invariance of this action at the classical level implies constraints on the

background supercurvatures and torsions which via the Bianchi identities lead to

the equations of motion for the background fields; for the heterotic string, under

investigation in this paper, at zeroth order in the string coupling constant α′ these

constraints describe the pure minimal SUGRA decoupled from SYM and the flat
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N = 1, D = 10 SYM theories. If one quantizes the sigma model, κ-anomalies can

show up, whose form is strongly restricted by the Wess-Zumino (WZ) consistency

condition. It turns out [2] that the non trivial solutions of the corresponding

cohomology problem are all such that the related κ-anomalies can be absorbed by

suitably modifying the (classical) constraints on the supercurvatures and torsions

of the background fields. This procedure has to be carried out order by order in

α′, i.e. loop by loop in the quantum expansion of the sigma model. The solution

of the Bianchi identities with these new constraints gives the new equations of

motion and hence the string-corrected effective action for SUGRA-SYM as a

power series in α′ with manifest SUSY.

In this paper we want to illustrate the powerfulness and conceptual elegance

of this procedure in the heterotic string by performing in particular for the first

time the direct perturbative computation of the κ-anomaly related to the Lorentz-

Chern-Simons term, but we shall also evidenciate its technical problems and

conceptual limitations among which the most striking one is the appearance of

infrared divergences.

With respect to the beta-function approach our algorithm presents a decisive

advantage: a contribution to the effective action obtained with beta-functions at

the n-th loop order is obtained with our algorithm at (n− 1) loops. May be this

is the reason why the Lorentz-Chern-Simons term has never been derived using

beta-functions (a two-loop computation!) while the κ-anomaly implying this term

arises at one-loop. Another technical difficulty related with the beta-function

approach is that the absence of a manifestly Lorentz covariant quantization pro-

cedure gives rise to Lorentz non-covariant intermediate results which are not easy

to handle. The κ-anomaly algorithm, on the other hand, produces directly the

modified constraints on the superspace so that the equations of motion can be

derived in a straightforward way by solving the Bianchi identities via standard

techniques, and the Lorentz non-covariance of the quantization procedure can be

easily handled, at least in the computation of the Lorentz κ-anomaly.

The paper is organized as follows. In section II we present the pure Super-

gravity and Super Yang-Mills system which constitutes the background of the
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heterotic Green-Schwarz string, along with the constraints on the supercurva-

tures and torsions needed to set the decoupled theory on-shell. The set of these

constraints is not unique, but is determined modulo field redefinitions. Using

this freedom we choose for the SUGRA a set of constraints in which the purely

spinorial components of the Lorentz-curvature vanish, Rαβa
b = 0 [18, 20]. This is

possible at the classical level where SUGRA is decoupled from SYM. This con-

straint being analogous to the constraint for the SYM curvature, Fαβ = 0 [30],

when computing the Lorentz κ-anomaly we can, to a certain extent but with an

important difference, follow the procedure for the computation of the Yang-Mills

κ-anomaly.

In section III we present the action for the Green-Schwarz heterotic sigma

model embedded in the SUGRA-SYM background together with its symmetries.

The action is κ-invariant only if the constraints that pose the background fields

on-shell are satisfied. The action is also invariant under gauge and Lorentz com-

bined transformations of the background fields and the string fields. These trans-

formations, as we will see, give rise to “anomalies”, but we would like to point

out that these transformations, not being actually symmetries of the theory, do

not produce true anomalies: they are a useful tool for the analysis of the related

gauge- and Lorentz-type κ-anomalies which are true anomalies of the theory.

In section IV we discuss briefly the quantization and describe the normal co-

ordinate expansion of the Green-Schwarz action in the framework of the Batalin-

Vilkovisky approach.

In section V we rederive the gauge anomaly and the κ-anomaly associated to

the Yang-Mills Chern-Simons form. Usually when computing an anomaly one

regularizes the classical action, computes the associated effective action and gets

the anomaly by varying the effective action. A less known alternative method

consists in regularizing the classical action and computing the variation of the

regularized classical action to get an “anomalous vertex”. The anomaly is simply

obtained by inserting the anomalous vertex in all Feynman diagrams and by

keeping only those which survive when the regulator goes to zero. We shall

use this alternative method to compute the gauge anomaly and the κ-anomaly
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associated to the Yang-Mills Chern-Simons form.

In section VI we apply a κ-gauge fixing to the expanded action which breaks

the manifest Lorentz invariance of the theory, but leaves a residual SO(8) in-

variance there. In analogy to the computation of section V we identify the

anomalous vertex associated to Lorentz transformations and compute the cor-

responding Lorentz anomaly together with its absolute coefficient. It turns out

that only the fermionic degrees of freedom of the string contribute to the Lorentz

anomaly, and that its coefficient, with respect to the naive guess, is divided by

a factor of two. This is due to the fact that the κ-symmetry implies that half

of the 16 fermionic degrees of freedom of the string are unphysical and therefore

only 8 of them circulate in the anomalous diagram. The final result can be easily

Lorentz-covariantized by employing the manifest SO(8) invariance of the result.

The gauge and Lorentz anomalies computed in sections V and VI can be elim-

inated by associating to the two-superform potential B of the N = 1, D = 10

supergravity sector transformation properties such that its curvature, defined as

H = dB + α′

4
(ω3Y M − ω3L) where ω3Y M and ω3L are the Yang-Mills and Lorentz

Chern-Simons forms, is gauge and Lorentz invariant, as one expects.

Section VII is devoted to the computation of the Lorentz κ-anomaly. In

the Yang-Mills sector the κ-transformation acts essentially as a field-dependent

gauge transformation and therefore the computation of the κ-anomaly is closely

related to that of the gauge anomaly. The action of the κ-transformation in the

gravitational sector is, however, a combination of a field-dependent local Lorentz

transformation and an “intrinsic” κ-transformation and the relation between the

Lorentz κ-anomaly Aκ and the Lorentz anomaly AL is less obvious. In fact

AL gets contributions only from loops where the fermionic fields of the string

circulate, while the κ-anomaly Aκ gets contributions also from loops with the

bosonic fields of the string circulating. These loops are necessary to saturate the
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coupled cohomology problem

ΩLAL = 0

ΩκAL + ΩLAκ = 0

ΩκAκ = 0.

(1)

where Ωκ and ΩL are the BRS operators associated to the κ-transformations

and Lorentz transformations respectively. Here the situation is similar to that

found in the case of the SUSY anomaly AS in a supersymmetric chiral Yang-Mills

theory. In that case the presence of an ABBJ Yang-Mills anomaly AG induces

the presence of a SUSY anomaly via the coupled cohomology problem:

ΩGAG = 0

ΩSAG + ΩGAS = 0

ΩSAS = 0,

(2)

where ΩG and ΩS are the BRS operators associated to gauge and SUSY trans-

formations respectively. As is well known the ABBJ anomaly AG gets contribu-

tions only from one-loop diagrams where chiral quarks circulate, while the SUSY

anomaly AS gets contributions also from loops of squarks, the scalar bosonic

superpartners of the quarks. These loops with squarks are necessary to saturate

the coupled cohomology problem (2).

We derive Aκ through the standard procedure by identifying the relevant part

of the effective action, by integrating over fermions and bosons and by varying

it. Besides the local terms which saturate exactly (1) one gets infrared diver-

gences coming from the integration over the massless bosons which are non local

and which spoil, moreover, κ-invariance in the sense that they would give rise to

non-local κ-anomalies. This is clearly related to the fact that there exists no κ-

symmetry preserving infrared regularization procedure for the GS sigma model:

as it stands, the perturbative expansion of the GS sigma model effective action

is inconsistent due to the presence of these infrared divergences. We argue by

exhibiting an explicit simplified example that these divergences are actually due

to an intrinsic non analyticity of the effective action, as a functional of the fields,

5



which can therefore not be expanded perturbatively as a polynomial in the exter-

nal fields. Assuming that a non-perturbative treatment will eventually eliminate

these divergences we can invoke a) the Wess-Zumino consistency condition for

the κ-anomalies and b) their locality to eliminate them completely without arbi-

trariness left. But this recipe amounts to a conjecture and not to a solution of

the infrared problem.

The κ-anomalies derived in this way induce a background SUGRA-SYM the-

ory based on the Bianchi identity in superspace

dH =
α′

4

(

trF 2 − trR2
)

(3)

precisely as predicted by the Green-Schwarz anomaly cancellation mechanism in

N = 1, D = 10 SUGRA-SYM [23] and by the (non supersymmetric) effective

action derived directly by the Veneziano-like superstring amplitudes [1].

The κ-anomaly method produces automatically the constraints on the back-

ground fields with which one has to solve (3) once the WZ consistency condition

is satisfied. In section VIII we check that our κ-anomalies satisfy indeed the WZ

condition and determine the corresponding superspace constraints. Differences

between these constraints and other constraints in the literature [15] are shown

to be related to κ-cocycles trivial at one loop.

Section IX contains some conclusions and outlooks on the κ-anomaly compu-

tation at higher loop orders, together with a brief analysis of the open problems

in the quantization procedure and perturbative treatment of the GS string sigma

model.

2 Pure Supergravity and Super Yang-Mills

In this section we outline the background theory required by the Green-Schwarz

heterotic sigma model.

A superspace in ten dimensions is parametrized by the coordinates ZM(σ) =

(Xm(σ), ϑµ(σ)), where Xm (m = 0, 1, . . . , 9) are the bosonic degrees of freedom
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and ϑµ (µ = 1, . . . , 16) are the fermionic degrees of freedom. The supervielbein

one-form EA = dZMEM
A(Z) describes the local flat frame (A = (a, α), where

(a = 0, 1, . . . , 9; α = 1, . . . , 16), is a flat index). For the ten-dimensional local

Lorentz group we use a Minkowski metric ηab with signature −8. The SO(32)

Lie-valued Yang-Mills connection one-superform is A = EBAB(Z), while the

Lorentz-valued connection one-superform is ΩA
B = ECΩCA

B(Z), where Ωa
α =

Ωα
a = 0, Ωα

β = 1
4
(Γab)α

βΩab. The supergravity potentials also comprehend the

two-superform B = 1
2
ECEDBDC(Z). The field strengths associated to EA, B, A

and ΩA
B are given by

TA = DEA = dEA + EBΩB
A (4a)

W = dB (4b)

F = dA+ AA (4c)

RA
B = dΩA

B + ΩA
CΩC

B (4d)

and the corresponding Bianchi identities are

DTA = EBRB
A (5a)

DW = 0 (5b)

DF = 0 (5c)

DRA
B = 0, (5d)

where d = dZM∂M , D is the Lorentz covariant superdifferential and D is the

gauge covariant superdifferential. The pure supergravity and Yang-Mills theories

are set on-shell by imposing a minimal set of constraints on the curvatures, which

is uniquely determined modulo field redefinitions, and we choose it to be

Tαβ
a = 2Γa

αβ, Tαa
b = 0 (6a)

(dB)aαβ = 2(Γa)αβ , (dB)αβγ = 0, (dB)αab = 0 (6b)

Fαβ = 0 (6c)

Rαβa
b = 0. (6d)
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Note in particular the constraint (6d): as shown in [20, 2], it can always be im-

posed for pure supergravity. This constraint allows to maintain a close parallelism

between the gauge and gravitational sectors.

The Bianchi identities then imply [18]

Tαβ
γ = 2δγ

(αλβ) − (Γg)αβ(Γg)γελε (7a)

Taα
β =

1

4
(Γbc)α

βTabc (7b)

Wabc ≡ (dB)abc = Tabc (7c)

Dαλβ = −(Γg)αβDgφ+ λαλβ +
1

12
(Γabc)αβTabc (7d)

DαTabc = −6(Γ[a)αεTbc]
ε (7e)

Faα = 2(Γa)αεχ
ε (7f)

Raαbc = 2(Γa)αεTbc
ε (7g)

Dαχ
β =

1

4
(Γab)α

βFab + Tαε
βχε (7h)

DαTcd
β =

1

4
(Γab)α

βRabcd + Tαε
βTcd

ε. (7i)

Here χε and Tab
ε are the gluino and the gravitino field strengths, Tabc, the vectorial

part of the torsion, is completely antisymmetric in its indices, φ is the dilaton

superfield and the gravitello superfield is λα ≡ Dαφ. Note the symmetry between

the gauge and Lorentz sector visible in the last four equations. The computation

of the related equations of motion can now be performed (see for example, with

constraints slightly different from ours, Ref. [15]), but for the purposes of this

work we do not need them.

It is also useful to introduce the gauge and Lorentz Chern-Simons three-

superforms

ω3Y M = tr
(

AF − 1

3
A3
)

ω3L = tr
(

ΩR − 1

3
Ω3
)

(8)

satisfying
dω3Y M = tr(FF )

dω3L = tr(RR)
(9)
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which will play a central role in what follows. In (8), (9) the traces are in the

fundamental representations of SO(32) and SO(10) respectively.

3 The action and its symmetries

The action for the heterotic Green-Schwarz sigma model in a SUGRA-SYM back-

ground is given by [26, 25]

I = −1

2

∫

d2σ
(√

ggijVi
aVja + εijVi

CVj
DBDC −√

ge−
jψDjψ

)

. (10)

Our notations are as follows. The string worldsheet is parametrized by the coordi-

nates σi (i, j = 0, 1). The sigma-model fields are the zweibeins e±
i(σ) with ei

± its

inverses, the superspace coordinates ZM(σ) which are worldsheet scalars and the

32 Majorana-Weyl heterotic world-sheet fermions ψr(σ) (r = 1, . . . , 32) which

stay in the fundamental representation of SO(32). Djψ = (∂j − Aj)ψ, where

Aj = Vj
BAB and the induced supervielbein Vi

A is defined as Vi
A = ∂iZ

MEM
A.

In the following we shall use flat light-cone indices on the worldsheet defined by

W± = e±
iWi if Wi is a worldsheet vector. The worldsheet metric is gij(σ), with

gij its inverse and g = − det gij and εij is the antisymmetric Ricci tensor. The

metric and the Ricci tensor can be expressed in terms of the zweibeins through:

gij =
1

2

(

e−
ie+

j + e+
ie−

j
)

εij

√
g

=
1

2

(

e−
ie+

j − e+
ie−

j
)

.

(11)

The self-dual projector P ij = gij +εij/
√
g can be expressed through the zweibeins

as P ij = e−
ie+

j . By introducing the two-dimensional Dirac matrices γp in a Ma-

jorana representation γ0 =

(

0 1
1 0

)

, γ1 =

(

0 −1
1 0

)

such that γ3 = −γ0γ1 =
(

−1 0
0 1

)

and using two-component Majorana spinors ψ to describe the het-

erotic fermions, the last term in (10) can be written as

IH =
1

2

∫

d2σ
√
ge−

jψγ+Djψ =
1

2

∫

d2σ
√
gep

jψγp 1 + γ3

2
Djψ, (12)
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where γ± = γ0 ± γ1 and ψ = ψTγ0. For notational simplicity we use the same

symbol for one-component spinors since no confusion should arise. The second

term in (12) will be used in the following.

The action (10) is invariant under d = 2 diffeomorphisms and local d = 2

Lorentz and Weyl transformations. In addition the Green-Schwarz action is also

invariant under Siegel’s local κ-symmetry [32] which permits to eliminate half of

the 16 ϑµ. The transformation parameter is a (self-dual) world-sheet vector and

space-time spinor κ+β(σ). The string fields transform as follows:

δκZ
M = ∆αEα

M (13a)

δκψ = ∆αAαψ ≡ Cψ (13b)

δκe+
i = −4e−

i
(

V+
ε − 1

2
ψχεψ

)

κ+ε (13c)

δκg = δκe−
i = 0 (13d)

where

∆α = V−
a(Γa)

αβκ+β ≡ (V/ −κ+)α; (14)

we use the notation W/ ≡ Wa(Γ
a)αβ for a vector field Wa. Correspondingly it can

be seen that the target superfields and superforms transform as

δκVi
A = Di∆

αδα
A + Vi

B∆γTγB
A − Vi

BLB
A (15a)

δκBMN = δκZ
L∂LBMN (15b)

δκTA···
B··· = ∆α∂αTA···

B··· (15c)

δκAi = DiC + Fi (15d)

δκΩia
b = DiLa

b +Ria
b (15e)

where we defined:

Ωia
b = ∂iZ

MΩMa
b (16a)

La
b = ∆γΩγa

b (16b)

Fi = Vi
B∆αFαB (16c)

Ria
b = Vi

B∆αRαBa
b. (16d)
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Under κ-transformations the action varies as:

δκI = −1

2

∫

d2σ
(

2
√
ggijViaVj

B∆γTγB
a + εijVi

CVj
D∆γ(dB)γDC

+
√
ge−

jψFjψ − 4
√
gV 2

−

(

V+
ε − 1

2
ψχεψ

)

κ+ε

)

. (17)

The vanishing of the purely gravitational contribution in (17) requires precisely

the constraints (6a), (6b). With these constraints the gravitational part of (17)

becomes, in fact,

(δκI)grav = 2
∫

d2σ
(√

gV 2
−
V+

ακ+α −√
gV+

α(V/ −∆)α

)

(18)

which vanishes since from the definition (14) of ∆α, one has

(V/ −∆)α = V 2
−
κ+α, V 2

−
≡ V−

aV−a. (19)

The vanishing of the Yang-Mills contribution in (17) requires the vanishing of the

spinor-spinor component of the Yang-Mills curvature (6c). Indeed with the aid

of (6c) and (7f) we get

Fi = −2Vi
b∆α(Γb)αβχ

β (20)

and, due to (19),

F− = −2V 2
−
(κ+εχ

ε). (21)

Notice that κ-invariance, at the classical level, does not imply any partic-

ular constraint on the spinor-spinor components of the Lorentz curvature two-

superform Rαβ. There are, in fact, a lot of field redefinitions which keep the

constraints in (6a) and (6b) invariant and give rise to different choices for Rαβa
b.

The constraint (6d) is extremely convenient for the purpose of the computation

of the Lorentz κ-anomaly. It allows to follow as closely as possible the derivation

of the Yang-Mills κ-anomaly. With this respect we notice that the relations (6d)

and (7g) imply in complete analogy to the Yang-Mills case that

Riab = −2Vi
c∆α(Γc)αβTab

β (22)

and therefore, due to (19)

R−ab = −2V 2
−
κ+εTab

ε (23)

11



which is proportional to V 2
−
, exactly as in (21). Eq. (23) will be of fundamental

importance in the derivation of the Lorentz κ-anomaly.

4 Quantization and normal coordinate expan-

sion

A preliminary step to quantize the sigma-model action considered in the pre-

vious section is to gauge-fix its local symmetries. Since the algebra is open

and reducible (in fact infinitely reducible) the safest way to do that is to work

in the Batalin-Vilkovisky (BV) approach [17]. Calling φI all the fields, ghosts,

antighosts, Lautrup-Nakanishi fields and secondary ghosts of the model, one in-

troduces for each φI an antifield φ∗

I with statistics opposite to φI and writes the

extended action S0[φ, φ
∗]

S0[φ, φ
∗] = I[φ] + (−1)n(I)φ∗

I∆
I [φ, φ∗]. (24)

Here n(I) is the grading of φI . I[φ] = S0[φ, 0] is just the action in (10), and the

terms linear in φ∗

I are obtained by coupling the antifields to the BRS transforma-

tions of the fields and the higher order terms are chosen so that S0 satisfies the

master equation

(S0, S0) ≡ (−1)n(I) δS0

δφI

δS0

δφ∗

I

= 0. (25)

As usual, here and in the following, repeated indices I imply sums over discrete

indices and integration over worldsheet coordinates. Notice that the BRS trans-

formations of φ are

δφI = (S0, φ
I)
∣

∣

∣

φ∗=0
= (−1)n(I) δS0

δφ∗

I

∣

∣

∣

∣

φ∗=0
= ∆I [φ, 0]. (26)

The formalism is a graded canonical one with φ, φ∗ as conjugate variables and

(F ,G) = (−1)n(I)

(

δF
δφI

δG
δφ∗

I

+
δF
δφ∗

I

δG
δφI

)

(27)

as graded Poisson bracket, F and G being even functionals of φ, φ∗ with zero

ghost number. The gauge-fixing is realized through a canonical transformation on
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S0[φ, φ
∗], generated by a suitably chosen “gauge fermion”, Ψ[φ] of ghost number

−1. We do not report here the explicit form of the extended action S0[φ, φ
∗] for

our heterotic string sigma-model. It can be found for instance in the last paper

of Ref. [2], Eq. (3.6).

On the other hand, calculations of quantum effective actions are simplified

by using the background field technique. It consists in performing, before doing

the gauge fixing, a split of the field variables φI into a classical part φI
0 and their

“fluctuations” χI to be quantized. In order to maintain local Lorentz and gauge

invariance we shall adopt a variant of this method known as “normal coordinate

expansion” [5, 6]. In that case the splitting is

φI = φI
0 + ΦI(φ0, χ) (28)

where χÎ are the quantum fields. More precisely let us divide the set of fields φI

in four groups

φI ≡
(

qi(σ), ψr(σ), ZM(σ), kα̂
n(σ)

)

(29)

where ZM are the string supercoordinates, ψr the heterotic fermions, qi denote

fields, ghosts etc that are inert under Lorentz and gauge transformations and kα̂
n

are ghosts and LN fields that transform as (left-handed or right-handed) Lorentz

spinors (i.e. α̂ denotes an upper or lower index α).

Similarly

φI
0 ≡

(

qi
0(σ), ψr

0(σ), ZM
0 (σ), kα̂

0n(σ)
)

(30)

and

χÎ ≡
(

Qi(σ),Ψr(σ), yA(σ), κα̂
n(σ)

)

. (31)

Then Eq. (28) writes

qi = qi
0 +Qi (32a)

ZM = ZM
0 + ΠM(Z0, y) (32b)

ψ = eΛ(Z0,y) (ψ0 + Ψ) (32c)

kn = eΣ(Z0,y) (k0n + κn) (32d)
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where ΠM , Λ and Σ depend on ZM
0 and yA only, Λ being SO(32) Lie algebra

valued and Σ Lorentz valued. In particular for the zweibein we write (32a) as

e±
i = e0±

i + h±
i. (33)

It is possible to implement the normal coordinate expansion in the framework of

the BV approach, as will be seen elsewhere [13]. For our purposes it is sufficient

to sketch the procedure.

First notice that, after the splitting (28), the action acquires an invariance

under a local shift of the background fields φ0, supplemented by a suitable trans-

formation of the quantum fields χ. Then consider the action

S̃0 = S0[φ, φ
∗] + (−1)n(I)φ∗

0IE I (34)

where φ∗

0I are the antifields for φI
0 and E I are the (classical) local shift ghosts.

The next step is to perform on S̃0 a canonical transformation of the fields φ,

φ0 and their (conjugate) antifields φ∗, φ∗

0 to implement the transformation (28)

on the fields φI , leaving unchanged the background fields φI
0. Then the gauge

fixing is performed by means of a further canonical transformation generated by a

suitable gauge fermion to obtain the final extended classical action S[χ, χ∗;φ0, φ
∗

0]

where χ∗

Î
are the antifields associated to χÎ .

Path-integrating over χÎ , one can define, by the standard procedure, the effec-

tive action Γ̃[χ, χ∗;φ0, φ
∗

0] (as usual, the classical fields associated to the quantum

fields χÎ are still denoted χÎ).

Thanks to the shift symmetry, it is possible to perform on Γ̃ a canonical

transformation to get an action Γ̂[χ, χ∗;φ0, φ
∗] where the terms linear in χÎ are

absent. Then by taking Γ̂ at χ = 0 = χ∗ and E = 0 one arrives at an effective

action Γ[φ0, φ
∗

0] that satisfies the Slavnov-Taylor identity

(Γ, Γ ) = 0. (35)

The field equations are
δΓ

δφI
0

[φ0, φ
∗

0] = 0. (36)

14



At zeroth order in α′, for φ∗

0 = 0 and disregarding the ghost fields one has the

classical field equations

D−V+a + ψ0γ+

(

V−
α(Γa)αβχ

β +
1

2
V−

cFac

)

ψ0 = 0 (37a)

V/ −αβ

(

V+
β − 1

2
ψ0χ

βψ0

)

= 0 (37b)

γ+

(

∂− −A− +
1

2
√
g
∂i(

√
ge−

i)

)

ψ0 = 0 (37c)

V 2
−

= 0 (37d)

V+
aV+a − ψ0D+ψ0 = 0. (37e)

We will limit ourselves to perform one-loop computations for an on-shell con-

figuration of the background fields φ0 satisfying (37). Notice that in particular,

due to the Virasoro constraint (37d), the vectors Fi, Ria
b, appearing in the trans-

formation of the connections, become chiral

gij
0 Fj =

εij

√
g0
Fj , i.e. F− = 0

gij
0 Rja

b =
εij

√
g0
Rja

b, i.e. R−a
b = 0.

(38)

The normal coordinate expansion amounts to a suitable choice of the functions

ΠM(Z0, y), Λ(Z0, y) and Σ(Z0, y) in Eqs. (32) in such a way as to restore the

Lorentz and gauge covariance of the expansion along the quantum fields of a

functional like the action I, Eq. (10). The geometrical meaning of ΠM is that it

defines the variables yA so that yA are tangent vectors to the geodesic joining the

origin of the normal coordinate Z0 to the point Z. For more details about ΠM

and Λ see Ref. [5] and [7] respectively. Up to second order in yA

ΠM = yBEB
M +

1

2
yByCDCEB

M + o(y3) (39a)

Λ = yBAB +
1

2
yByCDCAB + o(y3), (39b)

where DC is the Lorentz covariant derivative. A scalar functional which, as the

action (10), depends on ZM only through Vi
A(Z) and the flat components of
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the connections and curvatures can now be expanded, according to the Mukhi

algorithm,

I(Z, ψ, q) =
∞
∑

n=0

1

n!
∆nI(Z0, ψ0 + Ψ, q0 +Q) (40)

where the repeated application of the operator ∆ is defined as follows

∆Vi
A = Diy

A + Vi
ByCTCB

A (41a)

∆ΩiA
B = Vi

CyDRDCA
B (41b)

∆Ai = Vi
CyDFDC (41c)

∆TA···
B··· = yCDCTA···

B··· (41d)

∆yA = 0 (41e)

∆(ψ0 + Ψ) = 0 (41f)

∆(q0 +Q) = 0. (41g)

Here Diy
A = ∂iy

A + yBΩiB
A and TA···

B··· is any Lorentz and Yang-Mills tensor.

The expansion of Vi
A(Z) up to second order in yA is

Vi
A(Z) = ∂iZ

MEM
A(Z) = ∂iZ

M
0 EM

A +Diy
A + ∂iZ

M
0 EM

CyBTBC
A

+
1

2
Diy

CyBTBC
A +

1

2
∂iZ

M
0 EM

DyETED
CyBTBC

A

+
1

2
∂iZ

M
0 EM

CyByDDDTBC
A +

1

2
yD∂iZ

M
0 EM

CyBRBCD
A + o(y3).(42)

The fields on the last member of this expression are all evaluated in Z0. The

action is still BRS invariant after normal coordinate expansion if we maintain for

the background fields φ0 the classical variations (13), (15) and impose suitable

transformation properties on the quantum fields. These latter can be read from

the terms linear in Q∗, Ψ∗, y∗A, in the action S[χ, χ∗;φ0, φ
∗

0]. However a conve-

nient way to get δκy
A, δκΨ, δκhp

i is the following. Consider the expansion of

δZMEM
A(Z), obtained in analogy with the expansion of Vi

A(Z) in Eq. (42) to

obtain

δZMEM
A(Z) = δZM

0 EM
A + (δyA + yDδZM

0 EM
EΩED

A) + δZM
0 EM

CyBTBC
A
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+
1

2
(δyC + yDδZM

0 EM
EΩED

C)yBTBC
A +

1

2
δZM

0 EM
DyETED

CyBTBC
A

+
1

2
δZM

0 EM
CyByDDDTBC

A +
1

2
yDδZM

0 EM
CyBRBCD

A + o(y3). (43)

Once the left-hand side of this equation is known and once one specifies δZM
0 this

equation can be perturbatively solved for δyA. For κ-transformations we have

δκZ
M
0 EM

A(Z0) = ∆A(Z0) (44a)

δκZ
MEM

A(Z) = ∆A(Z) = ∆A(Z0) + yBDB∆A(Z0) + o(y2) (44b)

where ∆a = 0 and ∆α is given in Eq. (14). Notice that δyA appears in (43)

always in the combination δyA +yB∆γΩγB
A and that all other terms are Lorentz-

covariant. Therefore we can solve this equation perturbatively to get a Lorentz-

covariant expression for this combination. With the aid of (44) we obtain the

κ-transformations for yA which, together with (44a), leave the expanded action

invariant:

δκy
a = −yc∆γΩγc

a − ∆γyBTBγ
a + o(y2) (45a)

δκy
α = −yβ∆γΩγβ

α − ∆γyBTBγ
α + yBDB∆α + o(y2). (45b)

The o(y2) terms are all Lorentz-covariant. So we see that on the y’s κ-transformations

can be considered as a combination of a field-dependent Lorentz-transformation,

with parameter La
b ≡ ∆γΩγa

b, and an “intrinsic” Lorentz-preserving κ-transformation.

The BRS transformations on Ψ can be obtained in a similar way. We write

(see (32c)):

(

∂i−Ai(Z)
)

ψ = eΛ
[

(∂i − Ai(Z0))(ψ0 + Ψ) −
(

Vi
AyBFBA +

+
1

2

(

Diy
A + Vi

CyDTDC
A
)

yBFBA +
1

2
Vi

AyByCDCFBA + o(y3)
)

(ψ0 + Ψ)
]

.(46)

For generic variations δψ, δψ0, δΨ, δZM , δZM
0 , δyA we get therefore

δψ−δZMAMψ = eΛ
[

δψ0 − δZM
0 AMψ0 + δΨ − δZM

0 AMΨ −

−
(

δZM
0 EM

AyBFBA +
1

2
(δyA + yEδZM

0 ΩME
A + δZM

0 EM
CyDTDC

A)yBFBA

+
1

2
δZM

0 EM
AyByCDCFBA + o(y3)

)

(ψ0 + Ψ)
]

. (47)
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If we apply this formula to κ-transformations we see that the l.h.s. vanishes

identically. On ψ0 we impose its classical κ-transformation

δκψ0 = Cψ0, (48)

δκZ
M
0 is known and δκy

A has been determined above. Notice that again only

the Lorentz-covariant combination δκy
A + yB∆γΩγB

A appears. Therefore (47)

determines the κ-transformation of the quantum heterotic fermions:

δκΨ = CΨ +
(

∆αybFbα +
1

2
yCDC∆αybFbα

+
1

2
∆αybyCDCFbα + o(y3)

)

(ψ0 + Ψ). (49)

Also in this case we see that on the quantum fields Ψ the κ-transformations

act as a field-dependent gauge transformation, with transformation parameter

C = ∆αAα, plus an “intrinsic” gauge and Lorentz covariant κ-transformation.

The BRS transformation of the quantum zweibeins h±
i can be obtained by ex-

panding (13c) and (13d) and demanding again that e0±
i transforms “classically”.

The κ-transformations are given by

δκh−
i = 0 (50a)

δκh+
i = −4e0−

i
(

D+y
ε + V+

ByCTCB
ε +

1

2
ψ0y

ADAχ
εψ0

)

κ+ε −

− 4h−
i
(

V+
ε − 1

2
ψ0χ

εψ0

)

κ+ε + o(y2). (50b)

Now we have to be more specific about our gauge-fixing choice.

To fix world-sheet diffeomorphisms, Weyl and Lorentz invariance we shall

impose the condition

h±
i = 0 (51)

on the zweibeins quantum fields.

For what concerns κ-invariance, until now no D = 10 Lorentz-preserving

quantization procedure is known. Therefore, as unpleasant as it may be, we are

obliged to resort to a non-covariant gauge-fixing [12]. Consequently we shall fix
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κ-symmetry by introducing two light-like ten-dimensional constant vectors ma,

na satisfying

mana =
1

2

mama = 0 = nana

(52)

such that the matrices m/ ≡ maΓ
a, n/ ≡ naΓ

a can be used to project SO(10)

spinors down to SO(8) spinors. We impose

n/αβy
β = 0 (53)

and restrict the background-connection Ωia
b(Z0) according to

Ωiabn
b = 0 = Ωiabm

b (54)

such that the covariant derivative preserves (53)

n/αβDiy
β = 0. (55)

As a consequence of (54) we will get an SO(8)-invariant effective action and

can finally use this residual SO(8) invariance to covariantize our results back to

SO(10). This procedure supposes that in principle an SO(10) Lorentz-covariant

quantization scheme is available.

As for the huge series of secondary symmetries which arise due to the (infinite)

reducibility of κ-symmetry, they will be fixed by imposing on the quantum fields of

the κ-ghosts, antighosts, LN fields and secondary ghosts conditions like Eq. (53)

involving alternatively the constant vectors ma and na [12]. These conditions

together with the relevant field equations imply that the whole chain of κ-ghosts

do not propagate in our gauge and can be disregarded at the quantum level.

However the ghosts and antighosts of diffeomorphisms do propagate and in a

complete treatment they should be taken into account carefully. Yet in this paper

we are interested only on the κ-anomaly (at one loop) and the diffeomorphisms

ghosts are expected not to contribute with this respect.

We end this section by giving the normal-coordinate-expanded lagrangian at

second order in the quantum fields which is needed for our one-loop computa-

tions. In performing the expansion along the quantum variables we need also
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the relations (7) stemming from the solution of the Bianchi identities with the

constraints (6). We get (for hi
±

= 0)

L2 =
√
g
[

yαV−
a(Γa)αβD+y

β − 1

2
D−yaD+y

a − 2D−y
aV+

βyα(Γa)αβ

+ 2V−
aV+

byαTcb
ε(Γa)εαy

c − 1

4
V−

aV+
αydy

γ(Γa)αϕ(Γbc)
ϕ

γT
bcd

− 1

2
V−

aV+
bydycRdacb +

1

2
D−y

aV+
bTgbay

g − V−
βV+

bTcb
αycyg(Γg)αβ

+
1

4
V a
−
V b

+y
δyγ(Γacd)δγT

cd
b + V a

−
V+

αTδα
β(Γa)βγy

δyγ − 2V−
αV+

β(Γg)αδ(Γg)βγy
γyδ

+
1

2
ΨD−Ψ

]

+ o(Ψy) + o(ψ2
0y

2). (56)

The o(Ψy) + o(ψ2
0y

2) terms will not enter our calculations so we did not write

them explicitly.

In the next section we will start doing one-loop computations.

5 A non standard derivation of the Yang-Mills

anomaly and the related κ-anomaly

The normal-coordinate expanded lagrangian is also invariant under Yang-Mills

and Lorentz gauge transformations involving both the background fields and the

quantum fields. The Yang-Mills transformations are

δGAi = DiC ≡ ∂iC + CAi −AiC

δGΨ =
1 + γ3

2
CΨ,

(57)

where we have reintroduced the two-component notation for the quantum het-

erotic fermions, and the local Lorentz transformations are

δLΩiA
B = DiLA

B ≡ ∂iLA
B + LA

CΩiC
B − ΩiA

CLC
B

δLy
A = −yBLB

A

δLVi
A = −Vi

BLB
A

δLTA···
B··· = LA

CTC···
B··· − TA···

C···LC
B + · · ·

(58)
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where C is a local Lie algebra-valued parameter, C = CIT I and L is a Lorentz-

valued parameter, La
α = Lα

a = 0, Lα
β = 1

4
(Γab)α

βLab; Di and Di are the gauge

and Lorentz induced covariant derivatives, respectively and TA···
B··· is any Lorentz

tensor.

As a consequence it is meaningful to speak of the anomalies of these symme-

tries. The consideration of these Yang-Mills and Lorentz anomalies is a useful tool

to discuss the κ-anomalies associated to Yang-Mills and Lorentz Chern-Simons

forms, on which we are interested in this paper.

In this section we want to compute the by now well understood gauge-anomaly

of the Green-Schwarz sigma model in dimensional regularization by a non stan-

dard method [27]. This rederivation of the gauge anomaly will clarify also some

aspect of the appearance of the κ-anomaly associated to the Yang-Mills Chern-

Simons form and guide us also in the derivation of the Lorentz anomaly and the

κ-anomaly associated to the Lorentz Chern-Simons form.

Our computational method is based on the following rather general consider-

ation. Consider an action I[χ, φ0] which depends on a set of external fields φ0,

and on a set of quantum fields χ over which we are going to perform a path inte-

gration. Let us moreover assume that the action is at the classical level invariant

under a set of transformations δφ0, δχ with associated BRS charge Ω

ΩI = 0. (59)

Ω is a nilpotent operator if the algebra of the symmetry transformations is closed,

but when the algebra closes only on-shell (open algebra), as is the case of κ-

transformations, Ω is nilpotent only on-shell. In the Batalin-Vilkovisky approach

Eq. (59) is replaced by the master equation (25) for the extended action.

The Slavnov operator (S, ·) is nilpotent in all cases once S satisfies the master

equation. When the action I (the extended action S) is regularized dimensionally,

going in d = 2 + ǫ dimensions, one gets an action Iǫ (Sǫ) which is no longer

invariant (no longer satisfies the master equations) if the regularization breaks

the symmetry

(Sǫ, Sǫ) = Qǫ = ǫRǫ (60)
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or

ΩIǫ = Qǫ = ǫRǫ (61)

where Rǫ = Rǫ

∣

∣

∣

χ∗=φ∗

0
=0

. If ǫ→ 0 Iǫ → I (Sǫ → S) and Qǫ → 0 (Qǫ → 0).

It is convenient to define an action Sη
ǫ , introducing an anticommuting constant

parameter η which at the end will be set to zero, according to

Sη
ǫ = Sǫ + ηRǫ (62)

and Eq. (60) becomes

(Sη
ǫ , S

η
ǫ ) = ǫ

δSη
ǫ

δη
. (63)

The effective action Γ η
ǫ no longer satisfies the Slavnov-Taylor identity (35) which

is now replaced by

(Γ η
ǫ , Γ

η
ǫ ) = ǫ

δΓ η
ǫ

δη
(64)

or

ΩΓη
ǫ = ǫ

δΓη
ǫ

δη
(65)

where Γη
ǫ = Γ η

ǫ

∣

∣

∣

φ∗

0
=0

.

Due to the analyticity of the dimensional regularization at first order in α

(α = 2πα′ plays here the role of Planck’s constant) i.e. at one loop, we can make

the following expansion in η

Γη
ǫ = Iη

ǫ + α
((

Γ1 +
1

ǫ
Γ0

)

+ η
(

∆1 +
1

ǫ
∆0

))

(66)

where Γ1, ∆1 are finite and Γ0, ∆0 parametrize the divergent local contributions

to the effective action. Putting this into (65) and setting then η = 0 we get for

the regularized physical effective action

ΩΓǫ = ǫ
(

Rǫ + α(∆1 +
1

ǫ
∆0)

)

, (67)

and for ǫ→ 0

ΩΓ = α∆0. (68)

The Wess-Zumino consistency condition is then

Ω∆0 = 0. (69)
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If ∆0 cannot be written as the Ω-variation of a local action it constitutes an

anomaly.

Here we note that, thanks to (68) and (66) 1) The anomaly ∆0 is local and

finite; 2) the divergent part of the effective action is BRS invariant. What we

learned from these considerations, taking a look at (66), is that the anomaly can

be computed by inserting the “anomalous vertex” Rǫ once in all one-loop dia-

grams and keeping the 1/ǫ-divergent contributions or, alternatively, by inserting

Qǫ and taking the limit for ǫ → 0. With respect to the traditional perturbative

procedure where one computes first the effective action via Feynman diagrams

and then makes a variation we reversed the order: we make first a variation of

the regularized action and then compute Feynman diagrams. One advantage of

this procedure is that one never meets non-local terms which arise typically in

the traditional procedure where the anomaly stems from diagrams with different

numbers of external legs, which have to be combined with non-local contribu-

tions, as is for example the case for non-abelian ABBJ anomalies in any even

dimension.

Let us now apply this procedure to compute the Yang-Mills anomaly com-

ing from the heterotic sector. For a proper definition of the propagator for the

quantum heterotic fermions we have to augment the action

IH =
1

2

∫

d2σ
√
gep

iΨγp 1 + γ3

2
DiΨ (70)

by the decoupled term

I ′H =
1

2

∫

d2σΨγp 1 − γ3

2
∂pΨ (71)

which is trivially invariant under all local symmetries since we choose 1−γ3

2
Ψ to be

a singlet under all transformations. The dependence on the determinant g of the

heterotic fermions terms (70) and (71) is fictitious in that g can be eliminated

by rescaling the heterotic fermion fields Ψ. We use this freedom to write the

heterotic fermions action as

IH =
1

2

∫

d2σ
√

g̀èp
iΨγp

(

∂i −
1 + γ3

2
Ai

)

Ψ. (72)
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where we have introduced the left-accented zweibeins è+
i = δi

+, è−
i = e−

i. Later

we will use the right-accented zweibeins é+
i = e+

i, é−
i = δ−

i.

We have now to dimensionally extend this action; for that we shall follow the

t’Hooft-Veltman recipe as formulated by Breitenlohner and Maison [31]. We go

to D = 2 + ǫ dimensions keeping consistently γ3 strictly in two dimensions and

splitting a D-dimensional vector index i as i = (ı, ı̂) where ı stays strictly in 2

and ı̂ denotes the extra ǫ dimensions. A similar splitting is adopted for the flat

indices p = (p, p̂). The Dirac algebra becomes then [31]

{γp, γq} = 2ηpq

{γp, γ3} = 0
[

γ̂p, γ3
]

= 0.

(73)

We compute the gauge anomaly for the classical flat metric g̀ij = ηij restoring

the metric g̀ij at the end.

Performing now the transformations given in (57) we compute the anomalous

vertex associated to the dimensionally extended action gotten from (72) in a flat

metric to be

ΩIǫ
H =

1

2

∫

dDσΨCγ̂iγ3D̂iΨ (74)

where D̂i = ∂̂i − 1+γ3

2
Âi. Due to the fact that the connection Ai is an external

field which lives strictly in two dimensions we get for the anomalous vertex

ǫRǫ = Qǫ =
1

2

∫

dDσΨCγ̂iγ3∂̂iΨ. (75)

Qǫ contains as external fields only the ghost field C = CIT I which is attached to

a fermion line.

The Feynman rules are the usual ones

Ψ propagator
iα

k/
δrs (76a)

Ψ-Ψ-A gauge vertex
1

α
γi 1 + γ3

2
T I . (76b)

The Feynman rule associated to the anomalous vertex (75) is given by

Ψ-Ψ-C anomalous vertex
i

α

k̂/ − k̂/
′

2
γ3T J (76c)
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Figure 1: Fermionic graphs contributing to the one-loop anomaly.

where J is the gauge index carried by the external ghost field and k and k′ are the

incoming and outgoing momenta of the fermions. The Feynman graphs at one

loop with the insertion of one anomalous vertex of the type (76c) are indicated

in Fig. 1.

Let us compute the anomaly arising from the first diagram in that figure; it

contains one external gauge field AI and an external ghost CJ associated to (76c)

while in the loop are circulating fermions. Keeping the external momenta strictly

in two dimensions it is given by

i

α
AIJ

j (p) =
i

2
tr(T IT J)

∫ dDk

(2π)D
tr

(

k̂/γ3
1

k/
γj

1 + γ3

2

1

k/ − p/

)

. (77)

The integral over k is ultraviolet (logarithmically) divergent, on the other hand

k̂ is of order ǫ so that the result is expected to be finite. A careful calculation

gives in fact, in the limit ǫ→ 0:

AIJ
j =

α

8π
tr(T IT J)(ηmj − εmj)(ip

m). (78)

Upon adding the external legs, AI and CJ , and transforming back to configuration

space one gets for the gauge anomaly

A′

G = − α

8π

∫

d2σ tr(C∂+A−). (79)

If we go on to consider the diagrams with n external legs in Fig. 1, we may notice

that the integration over the loop-momentum behaves for large k as

∼
∫ Λ dDk

kn+1
k̂ ∼ Λ2−n. (80)

Now for n ≥ 3 the integral over k in (80) is surely convergent and due to the

presence of k̂ in the numerator, as ǫ → 0 the amplitude vanishes. So there is no
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contribution to the anomaly coming from all the diagrams in Fig. 1 with three or

more external gauge fields. The unique case to be considered remains the diagram

with the insertion of two gauge fields. In this case one gets a logarithmically

divergent integral in (80) and for ǫ → 0 one can set the external momenta to

zero. For the second diagram in Fig. 1 one gets

A2 =
∫

dDk

(k2)3
J (k3, k̂). (81)

The function J (k3, k̂) is written explicitly in the appendix. It is constituted by a

trace over γ-matrices containing three powers of momenta in D dimensions and

one k̂ which lives in ǫ dimensions. A careful analysis of this trace of γ-matrices

reveals, however, that actually A2 = 0 identically (see appendix A). As a result

also this diagram vanishes and we are left with the anomaly computed in (79) .

Restoring the left-accented metric we have

A′

G = − α

8π

∫

d2σ
√

g̀ tr(CD̀+A−), (82)

which is not invariant under diffeomorphisms. Here we defined the Weyl and

d = 2 local Lorentz covariant derivatives for a generic zweibein e±
i

D± = ∂± +
1√
g
∂j(

√
ge±

j). (83)

We can get a diff-invariant form of the anomaly by adding a local term (in

dimensional regularization the effective action is always defined modulo local

terms); we redefine the effective action according to

ΓH = Γ′

H − α

16π

∫

d2σ
√

g̀ tr(À+A−) (84)

to get the metric-independent gauge anomaly

AG =
α

8π

∫

d2σεij tr(C∂iAj). (85)

Clearly this anomaly can also be deduced directly by integrating (72) over the

fermions and computing the A-A contribution to the effective action (Fig. 2). For

a flat metric, with our (dimensional) regularization, one gets

Γ′

H = − α

16π

∫

d2σ(ηij − εij)(ηmn − εmn) tr
(

∂iAj
1

2
∂mAn

)

(86)

= − α

16π

∫

d2σ tr
(

∂+A−

1

2
∂+A−

)

.

26



We can restore the left-accented metric to obtain

Γ′

H = − α

16π

∫

d2σ
√

g̀ tr

(

D̀+A−

1

2g̀
D̀+A−

)

, (87)

where, for a generic metric gij ,

2g ≡ 1√
g
∂i(

√
ggij∂j) = D+∂− = D−∂+. (88)

As it stands, (87) suffers a diffeomorphisms anomaly which is however trivial and

can be eliminated by redefining Γ′

H as in (84) to get finally:

ΓH = − α

16π

∫

d2σ
√

g̀ tr

(

D̀+A−

1

2g̀
(D̀+A− −D−À+)

)

= − α

8π

∫

d2σ
√
g tr

(

A−

1

D−

εij∂iAj√
g

)

. (89)

It is not difficult to convince ourselves that actually the determinant
√
g scales

away in (89) and therefore we were allowed to replace
√
g̀ with

√
g. Varying this

action according to (57) we get

δGΓH =
α

8π

∫

d2σεij tr(C∂iAj) −

− α

8π

∫

d2σ
√
g tr

(

D+[C, A−]
1

2g
D+A−

)

. (90)

The first term in (90) is local and corresponds to the anomaly (85) while the

second term is non-local and is clearly spurious in the sense that it gets cancelled

by a corresponding term in the variation of Γ3, see the second diagram in Fig. 2

with three external gauge fields Ai. Now, also δ(ΓH+Γ3) contains, apart from AG,

non-local terms which are cancelled by δΓ4 and so on. These cumbersome linked

cancellations which are due to the non abelian nature of the Yang-Mills gauge

fields are elegantly avoided by the non-standard method we employed above,

because in that case the diagrams with two or more external gauge fields do simply

not contribute. Actually, our non-standard derivation of the gauge anomaly

constitutes a proof of these linked cancellations.

We turn now to the derivation of the κ-anomaly in the Yang-Mills sector

coming from the functional integration over the heterotic fermions of (72). The
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Figure 2: Fermionic graphs contributing to the one-loop effective action.

κ-transformations of the fields comparing in (72) are given by (here we use again

the two-component notation)

δκAi = DiC + Fi (91a)

δκΨ =
1 + γ3

2

[

CΨ +
(

∆αybFbα +
1

2
yCDC∆αybFbα

+
1

2
∆αybyCDCFbα + o(y3)

)

(ψ0 + Ψ)
]

. (91b)

δκèp
i = 0

where we recall that C = ∆αAα. As we observed already, the κ-transformations

act like a field-dependent gauge transformation with parameter C plus an intrinsic

κ-transformation. Notice that F− = 0, see (38), and that only A− is coupled to

the heterotic fermions in (72).

The field-dependent gauge transformation gives therefore rise to an anomalous

κ-vertex which is given by (75) where C has to be substituted by C. The related

κ-anomaly can then be computed in complete analogy to the gauge anomaly (82)

and one gets

Aκ
G = − α

8π

∫

d2σ
√

g̀ tr
(

CD̀+A−

)

. (92)

Again this anomaly is not diff-invariant and we add to the effective action the

same cocycle as in (84) to obtain the diff-invariant κ-anomaly,

Aκ
G =

α

8π

∫

d2σεij tr(C∂iAj + FiAj)

= − α

16π

∫

d2σεijVi
AVj

B∆γ(ω3Y M)γBA. (93)

The first line in (93) stems from (38) while the second line involves the defi-

nition of the Yang-Mills Chern-Simons form ω3Y M given in (8). The intrinsic
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κ-transformations are expected not to contribute to the κ-anomaly at one loop

since, as we will see in section VIII, (93) satisfies already the Wess-Zumino con-

sistency condition.

Taking a look at (17) one realizes that Aκ
G can be eliminated [25] by imposing

the constraints, which are imposed on W = dB in (6) at the classical level, on

the three-superform H defined as

H = dB +
α

8π
ω3Y M . (94)

This relation then requires that B has to transform anomalously under gauge-

transformations according to

δGB = − α

8π
tr(CdA) (95)

because δGω3Y M = d(CdA). Then, taking (95) into account, the gauge transfor-

mation of the action (10) cancels the gauge anomaly (85), as is well known.

The Bianchi identity associated to (94) is

dH =
α

8π
tr(FF ), (96)

it can be consistently solved in superspace [28], and it gives rise to the Chapline-

Manton theory [29], i.e. constitutes the minimally coupled SUGRA-SYM theory

in ten dimensions. Eq. (96) coincides with the result of Ref. [3] by taking into

account that our H differs from the one used in that reference by a factor of two.

6 The Lorentz anomaly

In this section we want to derive the Lorentz anomaly of the sigma model

with the same technique we used in the previous section to derive the gauge

anomaly. A Lorentz anomaly is expected to appear due to the chiral coupling of

the anticommuting yα to the induced Lorentz connection Ωiα
β ≡ 1

4
Ωiab(Γ

ab)α
β,

Ωia
b ≡ Vi

CΩCa
b, in the first term in (56), through the covariant derivative
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Djy
β ≡ ∂jy

β − Ωj
β

γy
γ. This term is invariant under the Lorentz transforma-

tions

δLy
α = Lα

βy
β (97a)

δLΩi
β

α = ∂iLβ
α + Lβ

γΩi
γ
α − Ωi

β
γLγ

α (97b)

Lβ
α =

1

4
(Γab)

β
αLab.

Since there exists up to now no SO(10) Lorentz-covariant quantization of the

theory we limit ourselves to derive the Lorentz anomaly under SO(8) transfor-

mations, i.e. such that

maLab = naLab = 0. (98)

To get a canonical kinetic term for the worldsheet scalars yα they have to be

transformed to worldsheet Majorana-Weyl fermions [24]. This can be achieved

by rescaling the yα by an SO(8) invariant quantity

yα =
1√
4n−

yα
u , (99)

where n− = V−
ana, and by introducing a worldsheet Majorana spinor as

Y α =

(

yα
u

yα
d

)

(100)

whose bottom component 1/2(1+γ3)Y α =

(

0
yα

d

)

is decoupled from the theory.

Then the first term in (56) can be rewritten as follows:

√
gyαV/ −αβD+y

β =
1

4n−

√
gY

α
ep

iγp1 − γ3

2
V/ −αβDiY

β . (101)

To complete the action of the Majorana-Weyl fermions Y α we have to add the

decoupled kinetic term of the yα
d ; in analogy with the discussion on the heterotic

fermions kinetic term we get

IF =
1

2

∫

d2σ
√

ǵ

(

1

2n−

Y
α
ép

iγp 1 − γ3

2
V/ −αβDiY

β + ép
iY αγp 1 + γ3

2
m/ αβ∂iY

β

)

.

(102)
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where now we use the right-accented zweibeins é+
i = e+

i, é−
i = δi

−
. IF is

invariant under SO(8) local transformations, i.e. (97b) and

δLY
α =

1 − γ3

2
Lα

βY
β. (103)

Now we can proceed along the lines of the preceding section to compute the

Lorentz anomaly. We use dimensional regularization to extend IF to Iǫ
F in

precisely the same manner as we did in the preceding section for the heterotic

fermions and compute the anomalous vertex associated to (102) for a flat metric

ǵij = ηij. We get

ΩLI
ǫ
F = −1

2

∫

dDσY
αLα

βγ̂iγ3

(

V−
a

2n−

(Γa)βγ
1 − γ3

2
Di +m/ βγ

1 + γ3

2
∂i

)

Y γ . (104)

To compute the anomaly we enforce now the κ gauge-fixing (53) which becomes

1 − γ3

2
(n/Y )α = 0. (105)

To do this we insert the identity n/m/ +m/ n/ = 1 in (102) and in (104), to get

Ĩǫ
F =

1

2

∫

dDσY
α
γi
(

∂im/ αβ − 1 − γ3

2
Ωiα

γm/ γβ

)

Y β (106)

ǫRǫ = Qǫ = −1

2

∫

dDσY αLα
βγ̂iγ3m/ βγ∂̂iY

γ . (107)

We used the fact that [L, n/ ] = 0 = [Ωi, n/ ] and that Ωiα
β lives strictly in two

dimensions.

Now we can use the formal analogy between (106), (107) and (72), (75) to

compute the anomaly. From (106) we deduce the Feynman rules

Y α propagator
iα

k/
n/ (108a)

Y -Y -Ω vertex
1

α
γi 1 − γ3

2

1

4
(Γabm/ )αβ (108b)

while for the anomalous vertex we get from (107) the Feynman rule

Y -Y -L anomalous vertex − i

α

k̂/ − k̂/
′

2
γ3 1

4
(Γcdm/ )αβ . (108c)
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The anomaly can now be computed in the same way as in the preceding section,

one only has to flip the chiralities. The first diagram in Fig. 1 with the insertion

of the anomalous vertex (108c) and one external Ωjab gives

i

α
Acd

jab(p) =
i

32
tr
(

Γcdm/ n/Γabm/ n/
)

∫ dDk

(2π)D
tr

(

k̂/γ3 1

k/
γj

1 − γ3

2

1

k/ − p/

)

. (109)

The integral in (109) has already been calculated in the previous section (see

(77)) while the trace of Γ-matrices, apart from terms which go to zero due to

(54), can be calculated to give

tr
(

Γcdm/ n/Γabm/ n/
)

= −16δc
[aδ

d
b]. (110)

The result for ǫ→ 0 is

Acd
jab = − α

8π
δc
[aδ

d
b](ηmj + εmj)(ip

m). (111)

Adding the external legs Lcd and Ωj
ab and restoring the right-accented zweibeins

we get for the SO(8) Lorentz anomaly

A′

L = − α

8π

∫

d2σ
√

ǵ tr
(

LD́−Ω+

)

. (112)

Here the traces are in the fundamental representation of the Lorentz group,

tr(LΩj) ≡ LabΩj
ba. Eq. (112) gives the anomaly under SO(8) transformations.

We postulate that the anomaly under SO(10) transformations, in an eventual

covariant quantization scheme, is still given by (112) where the constraints (54)

and (98) are released. Also in this case the diagrams with two or more external

Ωi fields and the insertion of an anomalous vertex are zero for ǫ→ 0.

Again, to render the anomaly diff-invariant we add a trivial cocycle to the

effective action as in (84)

ΓF = Γ′

F − α

16π

∫

d2σ
√

ǵ tr
(

Ώ−Ω+

)

, (113)

so that

AL = − α

8π

∫

d2σεij tr (L∂iΩj) . (114)

The direct computation of the Lorentz anomaly in this case requires to compute

the Ω-Ω contribution to the effective action coming from the integration over the
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fermions Y α in (106). The computation is standard, all one has to use is again

(110) and the result is completely analogous to (87):

Γ′

F = − α

16π

∫

d2σ
√

ǵ tr

(

D́−Ω+
1

2ǵ
D́−Ω+

)

. (115)

By adding the trivial cocycle as in (113) we get an expression analogous to (89),

ΓF =
α

8π

∫

d2σ
√
g tr

(

Ω+
1

D+

εij∂iΩj√
g

)

(116)

which is now diff-invariant. Its Lorentz variation is

δLΓF = − α

8π

∫

d2σεij tr (L∂iΩj) −

− α

8π

∫

d2σ
√
g tr

(

D−[L,Ω+]
1

2g
D−Ω+

)

. (117)

Again, the first line is the anomaly (114) while the second line is non-local and

gets cancelled by the diagram with three external Ω’s, see Fig. 1.

For a first attempt on the derivation of Eq. (117) see [8]. Let us briefly

discuss the appearance of additional Lorentz anomalies. Generally speaking they

can arise from the terms in (56) where the connection Ωi appears explicitly. In

the term −1
2

√
ggijDiy

aDjya the connection is non-chirally coupled, so no Lorentz

anomaly can arise. For what concerns the mixed term −2
√
gD−y

aV+
α(Γa)αβy

β,

to preserve manifest SO(8) invariance we have to impose the physical condition on

the external field Vj
β , n/αβVj

β = 0. Then upon inserting the identity n/m/ +m/ n/ = 1,

this term becomes −4
√
g∂−y

anaV+
βm/ βαy

α such that the connection drops due

to (54). The seventh term in (56) contains Ωi explicitly but does not contribute

to the Lorentz anomaly as we will see in the next section.

The terms which are quadratic in the yα in (56) give rise to “trivial” anoma-

lies and do therefore not constitute “anomalies”. We evidenciate this fact for

the nineth term. To preserve SO(8) invariance we have to impose on Tabc the

condition

naT
abc = 0 = maT

abc. (118)

Then this term can be taken into account simply by defining

Ω̃ia
b ≡ Ωia

b − 1

2
e−iV+

gTga
b, (119)
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that is:
Ω̃+a

b = Ω+a
b − V+

gTga
b

Ω̃−a
b = Ω−a

b.
(120)

This would produce instead of (112) the anomaly

ÃL = − α

8π

∫

d2σ
√

ǵ tr
(

LD́−Ω̃+

)

= A′

L − α

8π

∫

d2σ
√

ǵ ∂́−LabV+
cTc

ba

= A′

L + δL

(

− α

8π

∫

d2σ
√

ǵ Ώ−abV+
cTc

ba
)

(121)

and therefore ÃL and AL represent the same cohomology class.

The Lorentz anomaly can be cancelled if we subject the two-superform B to

the anomalous Lorentz transformation

δLB =
α

8π
tr(LdΩ) (122)

which, together with (95), defines the gauge and Lorentz invariant curvature

H = dB +
α

8π
(ω3Y M − ω3L) (123)

with the associated Bianchi identity in superspace

dH =
α

8π

(

trF 2 − trR2
)

. (124)

Notice that both traces in (124) are in the fundamental representations of SO(32)

and SO(10) respectively and, according to the Green-Schwarz anomaly cancella-

tion mechanism, this is then also precisely the relation which assures the absence

of gauge and Lorentz anomalies in N = 1, D = 10 Supergravity-Super-Yang-Mills

theory.

In the next section we will show that (123), (124) are actually sufficient and

necessary to cancel also the Lorentz κ-anomaly in our sigma model.
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7 The Lorentz-type κ-anomaly

At this point an important difference between the gauge sector and the grav-

itational sector shows up. The gauge-type κ-anomaly could be calculated by

simply varying (87) while the Lorentz-type κ-anomaly can not be computed by

varying simply (115). This can easily be seen by observing that in (115) with re-

spect to (87) the chiralities are flipped. For the κ-transformations of the induced

connections we have

δκAi = DiC + Fi

δκΩia
b = DiLa

b +Ria
b

where in both cases, see (38), F− = 0 and R−a
b = 0, while F+ and R+a

b are

different from zero. Therefore the variation of ΓF gives, unlike as in the Yang-

Mills case, apart from a local contribution, non-local contributions proportional

to R+; moreover ΓF depends non-locally on e+
j and the κ-variation of e+

j induces

additional non-local terms. It can also be seen that the local terms in δκΓF do

not satisfy the Wess-Zumino consistency condition, see the next section.

The key observation for the resolution of this puzzle is that, as can be seen

from (45), κ-transformations mix the fermions yα with the bosons ya. The

Lorentz-type κ-anomaly stems from the explicit coupling of the induced Lorentz-

connection Ωi to the quantum fields (ya, yα). While the ya do not contribute to

the Lorentz-anomaly, as we mentioned already, they are expected to contribute

to the Lorentz-type κ-anomaly because of their explicit coupling to the Ωi in the

term −1
2

√
ggijDiy

aDjya. Their contribution is actually essential to saturate the

coupled cohomology problem (1). The analogy with the supersymmetric part-

ner of an ABBJ anomaly in a d = 2 Super-Yang-Mills theory has already been

discussed in the introduction.

Since massless scalars in two dimensions, as are the ya, are always plagued

by infrared divergences we introduce an infrared mass regulator m and take the

relevant boson action to be

IB = −1

2

∫

d2σ
√
g
(

gijDiy
aDjya −m2yaya

)

. (125)
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Figure 3: Bosonic graphs contributing to the one-loop effective action.

Remember that Diy
a = ∂iy

a + ybΩib
a. The Feynman rules for gij = ηij are

ya propagator − iα

k2 −m2
ηab (126a)

Ω-y-y vertex
1

α
(k + k′)iδc

[aδ
d
b] (126b)

Ω-Ω-y-y vertex − 2i

α
ηijηbdηfaηgc. (126c)

The last vertex has to be saturated with the external legs Ωi
abΩj

cd while f and

g indicate the internal boson lines.

We compute the contribution of (125) to the effective action which is quadratic

in the Ωi. We have a self-energy type diagram and a tadpole diagram (the first

two pictures in Fig. 3). Since each of the two diagrams is individually ultraviolet

divergent we introduce also here a dimensional regularization with D = 2+ ǫ and

a scale µ to compute them. Adding up the two diagrams we get in momentum

space for generic m and ǫ

1

α
Γiab;j

cd(p) = δd
[aδ

c
b]

(

ηij −
pipj

p2

)

B(p2) (127)

where

B(p2) =
Γ(−ǫ/2)

(4π)D/2

(

m

µ

)ǫ
∫ 1

0
dx





(

1 − x(1 − x)
p2

m2

)ǫ/2

− 1



 . (128)

The result (127) is transverse as is required by the target-space Lorentz invariance

of (125). If we take m fixed and send ǫ → 0 the function B admits a finite limit
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meaning that the ultraviolet divergences which are present in both diagrams

(Fig. 3) cancel each other. Explicitly we get

B
∣

∣

∣

ǫ=0
= − 1

4π

∫ 1

0
dx ln

(

1 − x(1 − x)
p2

m2

)

= − 1

4π

∫ 1

0
dx ln

(

−m
2

p2
+ x(1 − x)

)

− 1

4π
ln

(

− p2

m2

)

. (129)

However, this result does not admit a finite limit for m → 0 which signals the

presence of an infrared divergence as anticipated above. Form→ 0 the divergence

can be directly read off from (129)

lim
m→0

B
∣

∣

∣

ǫ=0
→ 1

4π

(

2 − ln

(

− p2

m2

))

. (130)

Alternatively in (128) we can first send m → 0 and then regularize the infrared

divergence with the dimensional regularization which is already present

B
∣

∣

∣

m=0
=

1

4π

(

− p2

4πµ2

)ǫ/2

Γ(−ǫ/2)
∫ 1

0
dx(x(1 − x))ǫ/2.

Sending now ǫ→ 0 the infrared divergence shows up as a simple pole in ǫ

lim
ǫ→0

B
∣

∣

∣

m=0
→ 1

4π

(

2 − ln

(

− p2

4πµ2

)

− 2

ǫ
− γ

)

(131)

where γ is Euler’s constant.

To our knowledge infrared divergences of this type have not yet been discussed

in string theory and at present we have no proof for their cancellation. Below we

will argue that these divergences are actually only perturbative effects. Compar-

ing (130) with (131) we can separate out the infrared divergence and determine

the finite part of B to be

Bf =
1

2π
. (132)

In writing (132) we omitted the term ln(−p2) and the other (finite and divergent)

parts which we interpret as infrared effects, for the discussion see below. A similar

criterium for the separation of infrared divergences has been adopted in [14] to

prove the absence of a level shift in the WZWN model at two loops. In our
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case (132) is actually the unique choice which leads to a Wess-Zumino consistent

anomaly as we will see in the next section. With (132) we get for (127)

Γiab;j
cd =

α

2π
δd
[aδ

c
b]

(

ηij −
pipj

p2

)

.

Upon adding the external legs we obtain for the boson contribution to the effective

action

ΓB =
α

4π

∫

d2σ tr

(

Ωi

(

ηij − ∂i∂j

2

)

Ωj

)

and by restoring the worldsheet metric we get

ΓB =
α

16π

∫

d2σ
√
g tr

[

(D−Ω+ −D+Ω−)
1

2g

(D−Ω+ −D+Ω−)

]

. (133)

The total effective action can now be computed from (116) and (133) to be

Γ = ΓF + ΓB

=
α

16π

∫

d2σ
√
g tr

(

D+Ω−

1

2g
(D+Ω− −D−Ω+)

)

=
α

8π

∫

d2σ
√
g tr

(

Ω−

1

D−

εij∂iΩj√
g

)

(134)

which is now, apart from a sign difference due to the opposite chirality of the

heterotic fermions and the yα, formally identical to the effective action gotten

from the integration over the heterotic fermions, see (89). In particular (134)

does not depend on e+
i, but only on the κ-invariant fields e−

i and
√
g. Therefore,

when computing the κ-variation of (134) it is not necessary to vary the world-

sheet metric, but we can limit ourselves to vary the induced connection Ωi. To

understand better the non-local contributions of this variation we vary ΓF and

ΓB separately

δκΓF = − α

8π

∫

d2σεij tr (L∂iΩj − RiΩj)

− α

8π

∫

d2σ
√
g

[

tr

(

D− [L,Ω+]
1

2g
D−Ω+

)

+ tr

(

D−R+
1

2g
D−Ω+

)]

(135a)

δκΓB = − α

8π

∫

d2σ 2εij tr (RiΩj)

+
α

8π

∫

d2σ
√
g

[

tr

(

(D− [L,Ω+] −D+ [L,Ω−])
1

2g

(D−Ω+ −D+Ω−)

)
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+ tr

(

D−R+
1

2g
D−Ω+

)]

. (135b)

Now let us discuss the non-local terms in (135a) and (135b); first we notice

that the non-local terms proportional to R+ cancel between (135a) and (135b).

The term proportional to [L,Ω+] in (135a) is cancelled by the κ-variation of the

Ω-Ω-Ω contribution to the effective action gotten from the integration over the

fermionic yα since this term is due to the (field-dependent) Lorentz transformation

contained in the κ-transformation, and as we saw in the preceding section (see

formula (117)), the Ω-Ω-Ω contribution does not affect the Lorentz anomaly.

This is completely analogous to the case of the heterotic fermions. The non-

local contributions in (135b) which are proportional to [L,Ω±] are cancelled by

the (Lorentz part of) the variation of the Ω-Ω-Ω contribution to the effective

action gotten by the integration over the bosonic ya, simply because the ya do

not contribute to the Lorentz anomaly. Adding up the remaining contributions,

which are all local, we get for the κ-anomaly

Aκ
L = − α

8π

∫

d2σεij tr (L∂iΩj +RiΩj)

=
α

16π

∫

d2σεijVi
AVj

B∆γ(ω3L)γBA (136)

where we used the super Lorentz-Chern-Simons form defined in (8).

Clearly the result can also be obtained by varying directly (134) and keeping

only the local terms. The anomaly in (136) can be eliminated in the same way as

the Yang-Mills type κ-anomaly in section V. The anomaly (136) can be cancelled

if we modify once more Eq. (94) defining a new three-form field strength H

according to

H = dB +
α

8π
(ω3Y M − ω3L) (137)

and impose on H defined in (137) the constraints

Hαβγ = Habα = 0

Haαβ = 2(Γa)αβ.
(138)

Notice that (137) coincides with the definition (123), i.e. precisely the relation

which ensures also the cancellation of gauge and Lorentz anomalies.
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We will comment on possible additional “true” one-loop κ-anomalies in the

next section. Here we would like to point out that at one-loop the effective

action can produce trivial κ-anomalies which have to be eliminated by performing

suitable local subtractions on the classical action (10). We will illustrate this fact

in the following example.

In fact, additional contributions to the one-loop effective actions can be com-

puted by observing that the seventh and nineth term in (56) correspond formally

to a shift of the connection Ωia
b in the sense that they can be absorbed in the

second and first term respectively by defining formally a new Lorentz connection

as

Ω̃ia
b ≡ Ωia

b − 1

2
e−iV+

gTga
b. (139)

Therefore the seventh and nineth term in (56) can be taken into account by

replacing in the fermionic contribution (115) and in the bosonic contribution

(133) Ωi with Ω̃i to get respectively Γ̃′

F and Γ̃B. Summing up we obtain

Γ̃′

F +Γ̃B = Γ+
α

16π

∫

d2σ
√

ǵ
[

(

Ω+a
b − 2V+

gTga
b
)

Ώ−b
a +

1

2
δi
−
e−iV+

gTga
bV+

hThb
a
]

,

(140)

and the last three terms in this formula are not κ-invariant, but local. Therefore

the seventh and nineth term give rise to a trivial κ-anomaly which has to be

eliminated by redefining the classical action according to

I → I − α

16π

∫

d2σ
√

ǵ
[

(

Ω+a
b − 2V+

gTga
b
)

Ώ−b
a +

1

2
δi
−
e−iV+

gTga
bV+

hThb
a
]

.

(141)

Notice that the first two cocycles in (141) are precisely those which had to be

subtracted in the previous section to get a diff-invariant Lorentz anomaly , see

(113) and (121); the last cocycle in (141) is Lorentz invariant and is needed to

cancel a diff-anomaly from the effective action.

Let us now briefly comment on the infrared divergence encountered above.

The divergence is due to the presence of scalar massless bosons, the ya which

in two dimensions are known to be plagued by infrared divergences. We argue

that in the case at hand these divergences are actually perturbative effects by

reasoning as follows. In our case, in fact, the fields ya are “essentially” massive,
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in the sense that there are terms in the action (56) which are quadratic in the ya

1

2

∫

d2σ
√
g yaM2

ab(σ)yb (142)

where Mab is a function of the external fields. Let us assume that there exists a

configuration of the external fields such that M2
ab(σ) becomes a constant matrix,

i.e. independent of σ, and let us also assume, for the sake of simplicity, that this

matrix is proportional to the identity

M2
ab(σ) = M2δab. (143)

Then, for this configuration, (142) produces a mass term for the scalars, with

mass M. Then no infrared regularization is required and formula (128) becomes

Bǫ=0 = − 1

4π

∫ 1

0
dx ln

(

−M2

p2
+ x(1 − x)

)

− 1

4π
ln

(

− p2

M2

)

=
1

2π
− 1

4π

∫ 1

0
dx ln

(

1

x(1 − x)
− p2

M2

)

. (144)

The integral in (144) is now convergent, but it is non-analytic in the “external

fields” M. The perturbative approach we adapted to compute the Lorentz-

type κ-anomaly was based on a power series expansion in terms of polynomials

in the external fields, but clearly (144) cannot be expanded, around M = 0, in

polynomials of M. If one can generalize this argument for a generic configuration

of the external fields and we guess that this is possible, then one can conclude that

an additive part of the effective action is non-analytic in the external fields and

the infrared divergences we encountered are just signals of this non-analyticity.

The κ-invariance of the non-analytic contribution to the effective action seems

rather difficult to control, we guess that it is actually invariant due to the fact

that anomalies should always be local, and hence analytic.

As a last remark of this section we would like to stress that extracting as

“analytic” part from (144) the constant 1/2π turns out to be actually the correct

choice because the anomaly computed with this constant, and only with this

constant, turns out a) to be local and b) to satisfy the Wess-Zumino consistency

condition. In fact, for a different constant the non local-terms proportional to

R+ would not cancel between (135a) and (135b).
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A cohomogical analysis of the computed κ-anomalies and a brief discussion

of the resulting SUGRA-SYM theory follows in the next section.

8 Wess-Zumino consistency condition and SUGRA-

SYM theory

As anticipated in the introduction the computation of one-loop κ-anomalies per-

mits, imposing their cancellation, to derive the order-α corrections to the classi-

cal constraints on the superfields of the background theory. As has been shown

in [2] the Wess-Zumino consistency condition which has to be satisfied by the

κ-anomalies ensures the solvability of the Bianchi identities with these new con-

straints.

In this section we want to describe the main features of this method to derive

in particular the consistent order-α corrections to the pure N = 1, D = 10

SUGRA-SYM theory and apply it to the anomalies we have computed.

The total anomaly computed in the previous sections can be written as

Aκ = − α

16π

∫

d2σεijVi
AVj

B∆γGγBA (145)

where GγBA are the components of the three-superform

G =
1

3!
EAEBECGCBA ≡ ω3Y M − ω3L (146)

satisfying

dG = trF 2 − trR2. (147)

By taking for the BRS transformations of the ghosts κ+α (the ghosts κ+α commute

between themselves, κ+ακ+β = κ+βκ+α)

δκκ+α = κ+βκ+γ

(

V/
βε

−
Ωεα

γ + δβ
α(V/ λ)γ − V/

βγ

−
λα + 4δβ

αV−
γ − (Γg)

βγ(Γg)αεV−
ε
)

,

(148)

we can construct an on-shell nihilpotent BRS operator Ωκ, satisfying Ω2
κ = 0

(on shell). Then the anomaly is characterized as a (non-trivial) cocycle of Ωκ
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satisfying the BRS consistency condition

ΩκAκ = 0. (149)

By rewriting (145) as

Aκ = − α

16π

∫

d2σεij∂iZ
M∂jZ

NδκZ
LGLNM ,

we can compute (149), which turns out to be, modulo terms proportional to the

equations of motion,

ΩκAκ = − α

8π

∫

d2σεij∂iZ
M∂jZ

NδκZ
LδκZ

P∂[PGLNM)

= − α

32π

∫

d2σεijVi
AVj

B∆α∆β(dG)βαBA = 0. (150)

Due to the constraints (6c), (6d) with (147) the condition (150) reduces to

V−
cV+

d∆α∆β
(

trF 2 − trR2
)

αβcd
= 0

which, under the constraints (6), (7), becomes

∆αV/ −αγ

[

tr(χγχδ) − tr(T γT δ)
]

V/ +δβ∆β = 0 (151)

where we wrote tr(T γT δ) ≡ Tab
γT δba. On-shell (151) is identically satisfied due

to Eq. (19) and (37d) so that under the constraints (6), (7) our anomaly satisfies

the consistency condition identically.

In [2] it has been shown that for a generic G satisfying (150) the Bianchi

identities can be consistently solved with the constraints (138) and the definition

H = dB + α
8π
G. Then the Bianchi identities (124) can be consistently solved

with the constraints (138) while the constraints (6a), (6c) remain unchanged.

The check of the consistency of the Bianchi identities is straightforward, here we

report the order-α corrected relations between the various superfields. Notice

that it is not consistent to keep α2-corrections in that for getting the complete

α2-corrections one had to compute two-loop anomalies together with other ar-

rangements, see the discussion in the concluding section. We get

Taα
β =

1

4
(Γbc)α

βTa
bc − α

16π
(Γa)αε

(

tr(χεχβ) − tr(T εT β)
)

(152a)
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DαTabc = (Γ[a)αβ

(

−6Tbc]
β − 3α

8π

(

tr(Fbc]χ
β) − tr(Rbc]T

β)
)

)

(152b)

Dαλβ = −(Γg)αβD
gφ+ λαλβ

+
1

12
(Γabc)αβ

[

T abc +
α

64π
(Γabc)γδ

(

tr(χγχδ) − tr(T γT δ)
)

]

(152c)

Rαβab = − α

8π
(Γ[a)αε (tr(χεχϕ) − tr(T εT ϕ)) (Γb])ϕβ (152d)

Raαbc = 2(Γa)αβTbc
β +

3α

16π
(Γ[a)αβ

[

tr(Fbc]χ
β) − tr(Rbc]T

β)
]

. (152e)

In particular we have again

Habc = Tabc. (153)

With respect to the zeroth order constraints the principal feature is the appear-

ance of a non-vanishing Rαβab, which acquires now a 120 irreducible representation

(irrep) of SO(10), as is expected on general grounds for non-minimal supergrav-

ity theories, see [21, 15, 18]. Notice that now (trR2)αβγδ and (trR2)αβγa are no

longer zero, but of order α and hence the Wess-Zumino condition (149) is no

longer satisfied identically: it is satisfied only at first order in α according to our

one-loop computation. We stress again that to take α2-corrections into account

one had to go to two-loops.

Let us now discuss the presence of possible additional “true” anomalies at

first order in α, i.e. at one loop. For this purpose it is convenient to recall that

the total κ-anomaly AT
κ and the gauge and Lorentz anomalies AG and AL satisfy

on general grounds the following coupled cohomology problem

ΩκAT
κ = 0, ΩLAG + ΩGAL = 0 (154a)

ΩGAG = 0, ΩLAT
κ + ΩκAL = 0 (154b)

ΩLAL = 0, ΩGAT
κ + ΩκAG = 0 (154c)

where Ωκ, ΩG, ΩL are the BRS operators associated to κ, gauge and Lorentz

transformations respectively. If we take for AT
κ the anomaly Aκ we have found,

see Eq. (145), and for AG and AL (85) and (114) respectively it is not difficult

to show that all the equations in (154) are indeed satisfied, the first equation in

(154a) is nothing else than (149). Now, the gauge and Lorentz anomalies (85)
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and (114) are expected to be exact, i.e. not to get higher-loop corrections and

clearly they are one-loop exact, but it is not obvious at all that Eq. (145) presents

the complete one-loop κ-anomaly. We can in general write

AT
κ = Aκ +Xκ (155)

where Xκ is a possible missing anomaly. Then (155) has to satisfy again (154)

and, using the fact that Aκ satisfies it already, we get the conditions:

ΩκXκ = 0

ΩGXκ = 0

ΩLXκ = 0

(156)

which means that the missing anomaly Xκ has to be gauge and Lorentz invariant

and that it has to satisfy the κ-consistency condition independently from Aκ.

Possible solutions to (156) can be constructed as follows. We write

Xκ =
1

2

∫

d2σεijVi
AVj

B∆γXγBA (157)

where the two V ’s have to be there for dimensional reasons and we take XCBA

to be the components of a three-superform

X =
1

3!
EAEBECXCBA

which has to be gauge and Lorentz invariant . The κ-consistency condition on Xκ

becomes then
∫

d2σεijVi
AVj

B∆γ∆δ(dX)δγBA = 0, (158)

which is equivalent to

(dX)αβγδ = 0 (159a)

(dX)αβγa = 0 (159b)

∆βV−
a(dX)αβabV+

b∆α = 0. (159c)

Once the first two equations are satisfied the third one can be shown to be

equivalent to

(dX)αβab = (Γ[a)αϕH
ϕδ(Γb])δβ (159d)
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for some antisymmetric superfield Hϕδ belonging to the 120 dimensional irre-

ducible representation of SO(10) (see [2] and the previous section). A class of

solutions of Eqs. (159) can be determined as follows. Let us consider a gauge-

invariant (and Lorentz covariant) superfield Y abcd(Z) which is antisymmetric in

all its indices and belongs therefore to the 210 irrep of SO(10). Let us assume,

moreover that the combination DαYabcd + 2λαYabcd does not contain the highest

1440-dimensional irrep of SO(10), i.e.

(DαYabcd + 2λαYabcd)
1440 = 0. (160)

Then we can construct an X satisfying (158) in the following way:

Xαβγ = 0

Xaαβ = (Γabcde)αβY
bcde.

(161)

At this point it is not difficult to show that Eqs. (159) determine consistently and

uniquely Xabα and Xabc.

To conclude: each (gauge-invariant and Lorentz covariant) 210 irrep satisfy-

ing (160) specifies uniquely a cocycle of the operator Ωκ, and hence a possible

anomaly. If X can not be written as the superdifferential of a two-superform B̃,

X 6= dB̃, then X corresponds to a non trivial cocycle, i.e. to a true anomaly

(otherwise it can be eliminated by redefining the Wess-Zumino two-form B). In

this last case the anomaly (157) can be eliminated by imposing on H , still defined

in (137), the constraints

Hαβγ = 0

Haαβ = 2Γaαβ +Xaαβ (162)

Habα = Xabα.

In particular the relation between Habc and Tabc becomes now

Habc = Tabc +Xabc (163)

instead of (153). Eq. (158) assures again that the Bianchi identities can be

consistently solved, in particular the field Hϕδ modifies the relations given in

(152) by additional terms on the r.h.s., proportional to Hϕδ.
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Are such additional κ-anomalies really present at one-loop in our sigma-

model? The results of Ref. [15] could suggest that such an additional κ-anomaly

should show up. That paper deals with the solution of the Bianchi identity

dH =
α

8π

(

trF 2 − trR2
)

(164)

at second order in α2 (actually this paper gives a complete all order solution of

this Bianchi identity, found previously in [22] with a different but equivalent set

of constraints for the superfields). It turns out that an all order solution can be

obtained if one modifies the constraints on H precisely according to (162) where

Xaαβ and Xabα are of first order in α, and, in particular, at first order in α the

authors of [15] got for the 210 irrep Yabcd appearing in (161)

Yabcd = cα
(

R[abcd] + T[ab
α(Γcd])α

βλβ

)

, (165)

where c is a constant. It can easily be verified that the Yabcd given in this for-

mula verifies indeed (160) up to order α and therefore the three-superform X

constructed from (165) defines a cocycle of Ωκ at first order in α. Then one

could think that in the Green-Schwarz sigma model there should actually be

an additional one-loop κ-anomaly, parametrized by (165). However, as will be

shown elsewhere [19], the anomaly defined uniquely through Eqs. (165), (161)

and (159) is a trivial anomaly at first order in α. Correspondingly the solution

of the H-Bianchi identity found in [15] can be shown to be equivalent, at first

order in α, to the solution found by us in Eqs. (152) and (153) in the sense that

one solution can be mapped to the other through a redefinition of the fields of

the SUGRA-SYM theory [19].

Therefore we expect that no non-trivial Xκ satisfying (156) should appear at

one-loop in our sigma model; correspondingly the complete order-α corrections

to the pure SUGRA-SYM theory are given in Eqs. (152), (153) which show a

complete symmetry between the Yang-Mills and supergravity sectors. The equa-

tions of motion can be derived in a straightforward way from those relations using

standard superspace techniques [22].

Clearly non-trivial anomalies satisfying (156) have to appear at order α2,
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i.e. at two loops in the sigma model, because the Bianchi identities with the

parametrizations (152) are satisfied only at first order in α.

9 Conclusions

In this paper we established firmly the presence of the super Lorentz Chern-

Simons form in the Green-Schwarz heterotic string sigma model in a SUGRA-

SYM background. It has to be present in the definition of the field strength

associated to the two-form superpotential B in order to cancel a one-loop κ-

anomaly in the sigma model and also in order to cancel the one-loop Lorentz

anomaly. The absence of κ-anomalies is a consistency requirement in the sigma

model because κ-invariance ensures the decoupling of the eight unphysical degrees

of freedom of the sixteen fermionic ϑµ variables. To guarantee this decoupling

also at the quantum level we have to require the absence of κ-anomalies.

The relations (123) and (124), which entail the absence of gauge, Lorentz and

κ-anomalies at one-loop, reduce in ordinary ten-dimensional space-time precisely

to the relations which ensure the absence of the space-time gauge and Lorentz

anomalies in N = 1, D = 10 SUGRA-SYM according to the Green-Schwarz

mechanism [23].

The results of Refs. [2] imply moreover that the Bianchi identity (124) can be

consistently solved with the constraints (138) and this implies in turn that one

gets equations of motion in superspace which define a supersymmetric theory.

As we observed in section VIII no other true anomalies are expected to appear

at one loop, but at two loops anomalies of the X-type, Eq. (156) have to show

up for the reasons explained in that section. The computation of these two-loop

anomalies would require the following technical arrangements.

a) The normal coordinate expansion, performed in section IV, contains a chiral

gauge rotation of the heterotic fermions, with parameter Λ given in (39b) and an

(implicit) chiral Lorentz rotation for the fermions yα with parameter Σ. These

rotations, as shown in [3] do not leave the functional fermion integral invariant,

48



and therefore, when making two-loop computations, the two corresponding Wess-

Zumino actions have to be taken into account.

b) All trivial one-loop κ-cocycles have to be subtracted from the classical action

(10) and normal coordinate expanded up to second order in yA. The trivial

cocycles we found entail a subtraction ∆I which is given by

∆I = − α

16π

∫

d2σ
(

√

g̀ tr(A−À+) +
√

ǵ tr(Ώ−Ω+)
)

−

− α

16π

∫

d2σ
√

ǵV+
gTga

b
(

−2Ώ−b
a +

1

2
δi
−
e−iV+

hThb
a
)

. (166)

Notice, however, that this does not necessarily correspond to the whole one-loop

subtraction one should make in that we did not perform a complete one-loop

analysis of the effective action.

c) The action should be normal coordinate expanded up to the fourth-order in

yA. The order-α2 anomaly gets contributions at one loop from the y2 terms when

one inserts the new constraints/parametrizations (152); in particular the three-

form dB appearing in the normal coordinate expanded action at first-order in

yA has to be substituted with H − α
8π

(ω3Y M − ω3L). The order-α2 anomaly gets

contributions also at two loops from the y3 and y4 terms in which one has to

insert the old classical constraints.

It seems to us, however, that this program, even if conceptually not too com-

plicated, is technically rather involved.

It may also be that to make a reliable order-α2 computation one has to take the

conformal and κ ghost sectors appropriately into account and that the absence

of a D = 10 manifest Lorentz covariance can not be so easily handled as at

one loop. In particular, it may not be sufficient to impose appropriate SO(8)

transversality conditions on the background fields. With this respect the absence

of a manifestly Lorentz covariant quantization scheme constitutes a conceptual

drawback.
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Appendix A: computation of the two-gauge fields

anomaly diagram

The anomaly of the second diagram in Fig. 1, by use of the anomalous vertex

(75), is given by

AHIJ
2ij (p, q) = iα

∫

dDk

(2π)D
tr

(

(

ik̂/γ3TH
)

i

k/

(

γj
1 + γ3

2
T J
)

i

k/ − q/

(

γi
1 + γ3

2
T I
)

i

k/ − p/ − q/

)

;

as we need to compute this integral only in the limit for ǫ → 0, due to the

presence of the hatted order-ǫ k̂/ we can set the external momenta to zero to peek

the 1
ǫ
-pole coming from the logarithmically divergent integral over k.

AHIJ
2ij (p, q) = −α

∫

dDk

(2π)D

kmknkrks

(k2)3
tr
(

THT JT I
)

tr
(

γ̂mγ3γnγj
1 + γ3

2
γrγi

1 + γ3

2
γs

)

≡
∫

dDk

(k2)3
J HIJ

ij (k3, k̂).

We note that the i, j indices, being external, are implicitly barred; moreover, the r

index gets barred because it is constrained by two chiral projectors: 1+γ3

2
γr

1−γ3

2
=

1+γ3

2
γr

1−γ3

2
. With these simplifications, we can rewrite the gamma-matrices trace

as

tr
(

γrγsγ3γ̂mγn

(

1 − γ3

2
γiγj

))

;

now we use the fact that the integral in k can only produce symmetrized con-

tractions of m, n, r, s indices. But since ηı̂ = 0 the only possibility is

(ηrsηmn + ηrnηms) tr
(

γrγsγ3γ̂mγn

(

1 − γ3

2
γiγj

))

= tr
[

(γrγ
rγ3γ̂mγ̂

m + γrγ̂mγ3γ̂
mγr)

(

1 − γ3

2
γiγj

)]
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which vanishes by using the commutation properties of the γ3 matrix with γ̂m

and γr.
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